Carbon nanotube thin film transistor (CNT-TFF) is an emerging technology for future macroelectronics, such as chemical and biological sensors, optical detectors, and the backplane driving circuits for flat panel dis...Carbon nanotube thin film transistor (CNT-TFF) is an emerging technology for future macroelectronics, such as chemical and biological sensors, optical detectors, and the backplane driving circuits for flat panel displays. The mostly reported fabrication method of CNT-TFT is a lift-off based photolithography process. In such fabrication process, photoresist (PR) residue contaminates the interface of tube-metal contact and deteriorates the device performance. In this paper, ultraviolet ozone (UVO) and oxygen plasma treat- ments were employed to remove the PR contamination. Through our well-designed experiments, the UVO treatment is confirmed an effective way of cleaning contamination at the tube-metal interface, while oxygen plasma treatment is too reactive and hard to control, which is not appropriate for CNT-TFTs. It is determined that 2-6 rain UVO treatment is the preferred window, and the best optimized treatment time is 4 rain, which leads to 15% enhancement of device performance.展开更多
基金supported by the National Key Research and Development Program of China(2016YFA0201902)the National Natural Science Foundation of China(61621061)Beijing Municipal Science&Technology Commission(Z171100002017001)
文摘Carbon nanotube thin film transistor (CNT-TFF) is an emerging technology for future macroelectronics, such as chemical and biological sensors, optical detectors, and the backplane driving circuits for flat panel displays. The mostly reported fabrication method of CNT-TFT is a lift-off based photolithography process. In such fabrication process, photoresist (PR) residue contaminates the interface of tube-metal contact and deteriorates the device performance. In this paper, ultraviolet ozone (UVO) and oxygen plasma treat- ments were employed to remove the PR contamination. Through our well-designed experiments, the UVO treatment is confirmed an effective way of cleaning contamination at the tube-metal interface, while oxygen plasma treatment is too reactive and hard to control, which is not appropriate for CNT-TFTs. It is determined that 2-6 rain UVO treatment is the preferred window, and the best optimized treatment time is 4 rain, which leads to 15% enhancement of device performance.