期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于NAKF和DBN的液压管路故障智能诊断方法 被引量:2
1
作者 姚存治 张明真 +1 位作者 张尚然 王冠群 《机电工程》 CAS 北大核心 2022年第5期587-595,共9页
针对航空液压管路故障识别困难的问题,提出了一种基于非线性自适应卡尔曼滤波器(NAKF)和深度信念网络(DBN)的液压管路智能故障诊断方法。首先,在传统卡尔曼滤波器(KF)的基础上,利用最小二乘法修正构造的Sigma点,消除高斯分布对Sigma点影... 针对航空液压管路故障识别困难的问题,提出了一种基于非线性自适应卡尔曼滤波器(NAKF)和深度信念网络(DBN)的液压管路智能故障诊断方法。首先,在传统卡尔曼滤波器(KF)的基础上,利用最小二乘法修正构造的Sigma点,消除高斯分布对Sigma点影响,提出了非线性自适应卡尔曼滤波器,并用其对仿真信号进行了降噪处理;然后,对液压管路实测振动信号中的随机噪声进行了去除,对深度信念网络模型参数进行了设计,并将液压管路数据集输入到深度信念网络模型中进行了训练;最后,基于同一样本数据,分别采用支持向量机(SVM)和反向传播神经网络(BPNN)等模型进行了训练处理,利用分类准确率等两个指标,对3种故障诊断模型进行了综合评估,对3种模型分类性能进行了对比分析。研究结果表明:采用NAKF-DBN智能故障模型得到的液压管路故障诊断准确率能达到99.72%,SVM模型和BPNN模型等浅层网络的平均故障诊断准确率不高于95%,而未经非线性自适应卡尔曼滤波器滤波的深度信念网络的诊断准确率仅有86.58%;该结果验证了NAKF-DBN模型对于液压管路故障识别的有效性,可以为航空液压管路的智能化诊断提供新思路。 展开更多
关键词 液压传动回路 支持向量机 反向传播网络 深度信念网络 非线性适应卡尔曼滤波 智能故障模型
下载PDF
改进非线性自适应卡尔曼滤波器滤波效果分析 被引量:1
2
作者 孙杰 于晓光 +3 位作者 刘忠鑫 薛政坤 刘佳鸣 郭延稳 《机床与液压》 北大核心 2021年第22期13-17,共5页
为解决机械系统特别是航空液压管路系统振动过程中存在诸多噪声干扰、难以保证对有效振动信号进行准确分析的问题,结合非线性自适应算法、最小二乘法及传统卡尔曼滤波器,设计改进非线性自适应卡尔曼滤波器。通过仿真,在模拟的振动信号... 为解决机械系统特别是航空液压管路系统振动过程中存在诸多噪声干扰、难以保证对有效振动信号进行准确分析的问题,结合非线性自适应算法、最小二乘法及传统卡尔曼滤波器,设计改进非线性自适应卡尔曼滤波器。通过仿真,在模拟的振动信号中加入随机噪声,并且将滤波前后振动信号的时域图和频域图进行对比。通过实验数据进行滤波效果对比,验证非线性自适应卡尔曼滤波器滤波效果的优越性。 展开更多
关键词 机械振动 非线性适应卡尔曼滤波 滤波效果 振动信号
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部