期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于EMD-NAR神经网络的大坝变形预测 被引量:4
1
作者 杨诚 王维钰 《北京测绘》 2020年第3期386-390,共5页
为了使大坝变形的预测精度更高,针对大坝形变量的时间序列中存在着非平稳和非线性等曲线特性,使用一种经验模态分解(EMD)和非线性自回归动态神经网络(NAR)相结合的EMD-NAR模型对大坝形变时间序列进行预测。以某大坝实测的时间序列数据... 为了使大坝变形的预测精度更高,针对大坝形变量的时间序列中存在着非平稳和非线性等曲线特性,使用一种经验模态分解(EMD)和非线性自回归动态神经网络(NAR)相结合的EMD-NAR模型对大坝形变时间序列进行预测。以某大坝实测的时间序列数据为算例,分别使用BP模型、NAR模型和EMD-NAR模型进行实验对比,结果表明,BP、NAR、EMD-NAR模型预测的均方根误差(RMSE)分别为0.9449,0.6993,0.4678;模型预测的平均相对误差(MRE)分别为0.1492,0.1065和0.0688,从三种模型预测结果对比可知,组合的EMD-NAR模型预测精度最高且稳定性最好,为时间序列的大坝形变预测提供一种新的参考思路。 展开更多
关键词 大坝变形 经验模态分解(EMD) 非线性回归(nar) 神经网络 时间序列
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部