A novel all-fiber low-pedestal pulse compression scheme is proposed and investigated. The scheme is based on an anomalously dispersive single-mode fiber(SMF) cascading a nonlinear optical loop mirror(NOLM) with anothe...A novel all-fiber low-pedestal pulse compression scheme is proposed and investigated. The scheme is based on an anomalously dispersive single-mode fiber(SMF) cascading a nonlinear optical loop mirror(NOLM) with another anomalously dispersive SMF in the loop. Numerical results show that excellent pulse compression and pedestal reduction can be achieved by using the proposed scheme.展开更多
A nonlinear optical loop mirror (NOLM) constructed with linear dispersion decreasing fiber (DDF) is used to compress a beat signal. Several factors impacting on quality of output pulse in this compression system, such...A nonlinear optical loop mirror (NOLM) constructed with linear dispersion decreasing fiber (DDF) is used to compress a beat signal. Several factors impacting on quality of output pulse in this compression system, such as dispersion slope of DDF, power-splitting ratio, incident pulse shape and peak power, are analyzed numerically. The new method for selecting device characteristics is adopted to enable both good pedestal suppression and pulse compression. As a result, the output pulse train with tunable and high repetition rate, pedestal energy of 5.09%, compression ratio of 25.6 and energy transmissivity of 50.56% is obtained by using 0.524 km-long DDF with dispersion slope of 26 ps^2/km^2 and a coupler with power-splitting ratio of 0.54.展开更多
基金National Basic Research Program of China(Grant NO.2003CB314906)Foundationfor Key Program of Ministry of Education,China(Grant No.104046)Foundation from the Education Commission of Beijing,China(Grant NO.XK100130437)
基金supported by the National Natural Science Foundation of China(No.61501118)the Guangdong Natural Science Fund(No.2014A030310262)
文摘A novel all-fiber low-pedestal pulse compression scheme is proposed and investigated. The scheme is based on an anomalously dispersive single-mode fiber(SMF) cascading a nonlinear optical loop mirror(NOLM) with another anomalously dispersive SMF in the loop. Numerical results show that excellent pulse compression and pedestal reduction can be achieved by using the proposed scheme.
文摘A nonlinear optical loop mirror (NOLM) constructed with linear dispersion decreasing fiber (DDF) is used to compress a beat signal. Several factors impacting on quality of output pulse in this compression system, such as dispersion slope of DDF, power-splitting ratio, incident pulse shape and peak power, are analyzed numerically. The new method for selecting device characteristics is adopted to enable both good pedestal suppression and pulse compression. As a result, the output pulse train with tunable and high repetition rate, pedestal energy of 5.09%, compression ratio of 25.6 and energy transmissivity of 50.56% is obtained by using 0.524 km-long DDF with dispersion slope of 26 ps^2/km^2 and a coupler with power-splitting ratio of 0.54.