期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
土壤水分特征曲线Van-Genuchten模型参数的土壤传输函数比选 被引量:3
1
作者 李彬楠 樊贵盛 《中国农村水利水电》 北大核心 2018年第5期33-36,共4页
基于黄土高原区多种土壤的水分特征曲线试验数据样本,建立了以土壤黏粒、土壤粉粒、干密度、有机质和盐分含量为输入变量,Van-Genuchten模型参数α与n为输出变量的非线性预报模型和灰色BP神经网络预报模型,在对两种模型误差参数α与n分... 基于黄土高原区多种土壤的水分特征曲线试验数据样本,建立了以土壤黏粒、土壤粉粒、干密度、有机质和盐分含量为输入变量,Van-Genuchten模型参数α与n为输出变量的非线性预报模型和灰色BP神经网络预报模型,在对两种模型误差参数α与n分别进行误差分析比较的基础上,对两种模型的预测结果进行了整体误差分析。结果表明:无论是参数α还是参数n,非线性模型的平均相对误差低于10%,综合精度平均相对误差为15.73%;灰色BP神经网络模型的预测精度的平均相对误差低于4%,综合精度平均相对误差为10.01%,灰色BP神经网络模型的预测精度都要比非线性模型的预测精度高,但灰色BP神经网络模型易出现过度拟合的情况。综合而言,两种模型均能实现Van-Genuchten模型参数α与n的预测,可根据具体情况选用其中一种以达到更好的预测效果。 展开更多
关键词 土壤水分特征曲线参数 Van-Genuchten模型 非线性传输函数 灰色-BP神经网络 比选
下载PDF
土壤水分特征曲线模型参数的非线性传输函数研究 被引量:2
2
作者 李彬楠 樊贵盛 《节水灌溉》 北大核心 2017年第12期8-12,共5页
以黄土高原区土壤为研究对象,通过土壤水分特征曲线与土壤基本理化参数系列试验,获得了Van-Genuchten模型参数的实测数据样本,建立了土壤基本理化参数与Van-Genuchten模型参数之间一一对应的关系,创建了以土壤黏粒含量、粉粒含量、容重... 以黄土高原区土壤为研究对象,通过土壤水分特征曲线与土壤基本理化参数系列试验,获得了Van-Genuchten模型参数的实测数据样本,建立了土壤基本理化参数与Van-Genuchten模型参数之间一一对应的关系,创建了以土壤黏粒含量、粉粒含量、容重、有机质含量、全盐量为输入变量,Van-Genuchten模型参数为输出变量的非线性传输函数预报模型。研究表明:以土壤黏粒含量、粉粒含量、容重、有机质含量、全盐量为输入变量,对Van-Genuchten模型参数进行非线性预报是可行的;所建立的非线性预报模型精度较高,预测样本下Van-Genuchten模型参数α的实测值与预测值的相对误差的平均值为9.66%,参数n的实测值与预测值的相对误差的平均值为6.83%,检验样本参数α的实测值与预测值的相对误差的平均值为7.34%,参数n的实测值与预测值的相对误差的平均值为5.45%。研究成果为黄土地区提供一种便捷获取土壤水分特征曲线的途径。 展开更多
关键词 黄土 土壤水分特征曲线 土壤基本理化参数 Van—Genuchten模型 非线性土壤传输函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部