为了改善燃油泵噪声、振动、声振粗糙度(noise,vibration and harshness,NVH)性能,提高燃油泵声音品质,开展了燃油系统旋涡泵压力脉动的控制研究。采用计算流体动力学(Computational Fluid Dynamics,CFD)数值模拟方法和理论分析方法分...为了改善燃油泵噪声、振动、声振粗糙度(noise,vibration and harshness,NVH)性能,提高燃油泵声音品质,开展了燃油系统旋涡泵压力脉动的控制研究。采用计算流体动力学(Computational Fluid Dynamics,CFD)数值模拟方法和理论分析方法分析燃油系统微型旋涡泵的压力脉动特性,并采用随机叶片分布方法设计了2种非均布程度不同的非等距叶轮。基于CFD数值模拟结果和理论分析结果,提出一种改进的非等距叶轮设计方法。燃油泵噪声试验结果验证了该设计与控制方案的可行性。结果显示:相较于等距叶轮,随机非等距叶轮燃油泵的中高频段尖锐噪声消失,NVH性能提升;随机非等距叶轮能够显著分散叶频峰值,非均布程度的增加显著增大了随机非等距叶轮的叶频脉动幅值下降幅度。因此,采用随机叶片分布方法,有助于改善旋涡泵的压力脉动特性,对改善燃油泵的NVH性能具有重要的工程应用价值。展开更多
文摘为了改善燃油泵噪声、振动、声振粗糙度(noise,vibration and harshness,NVH)性能,提高燃油泵声音品质,开展了燃油系统旋涡泵压力脉动的控制研究。采用计算流体动力学(Computational Fluid Dynamics,CFD)数值模拟方法和理论分析方法分析燃油系统微型旋涡泵的压力脉动特性,并采用随机叶片分布方法设计了2种非均布程度不同的非等距叶轮。基于CFD数值模拟结果和理论分析结果,提出一种改进的非等距叶轮设计方法。燃油泵噪声试验结果验证了该设计与控制方案的可行性。结果显示:相较于等距叶轮,随机非等距叶轮燃油泵的中高频段尖锐噪声消失,NVH性能提升;随机非等距叶轮能够显著分散叶频峰值,非均布程度的增加显著增大了随机非等距叶轮的叶频脉动幅值下降幅度。因此,采用随机叶片分布方法,有助于改善旋涡泵的压力脉动特性,对改善燃油泵的NVH性能具有重要的工程应用价值。