非平稳多变量时间序列(non-stationary multivariate time series, NSMTS)预测目前仍是一个具有挑战性的任务.基于循环神经网络的深度学习模型,尤其是基于长短期记忆(long short-term memory, LSTM)和门循环单元(gated recurrent unit, ...非平稳多变量时间序列(non-stationary multivariate time series, NSMTS)预测目前仍是一个具有挑战性的任务.基于循环神经网络的深度学习模型,尤其是基于长短期记忆(long short-term memory, LSTM)和门循环单元(gated recurrent unit, GRU)的神经网络已获得了令人印象深刻的预测性能.尽管LSTM结构上较为复杂,却并不总是在性能上占优.最近提出的最小门单元(minimal gated unit, MGU)神经网络具有更简单的结构,并在图像处理和一些序列处理问题中能够提升训练效率.更为关键的是,实验中我们发现该门单元可以高效运用于NSMTS的预测,并达到了与基于LSTM和GRU的神经网络相当的预测性能.然而,基于这3类门单元的神经网络中,没有任何一类总能保证性能上的优势.为此提出了一种线性混合门单元(MIX gated unit, MIXGU),试图利用该单元动态调整GRU和MGU的混合权重,以便在训练期间为网络中的每个MIXGU获得更优的混合结构.实验结果表明,与基于单一门单元的神经网络相比,混合2类门单元的MIXGU神经网络具有更优的预测性能.展开更多
文摘非平稳多变量时间序列(non-stationary multivariate time series, NSMTS)预测目前仍是一个具有挑战性的任务.基于循环神经网络的深度学习模型,尤其是基于长短期记忆(long short-term memory, LSTM)和门循环单元(gated recurrent unit, GRU)的神经网络已获得了令人印象深刻的预测性能.尽管LSTM结构上较为复杂,却并不总是在性能上占优.最近提出的最小门单元(minimal gated unit, MGU)神经网络具有更简单的结构,并在图像处理和一些序列处理问题中能够提升训练效率.更为关键的是,实验中我们发现该门单元可以高效运用于NSMTS的预测,并达到了与基于LSTM和GRU的神经网络相当的预测性能.然而,基于这3类门单元的神经网络中,没有任何一类总能保证性能上的优势.为此提出了一种线性混合门单元(MIX gated unit, MIXGU),试图利用该单元动态调整GRU和MGU的混合权重,以便在训练期间为网络中的每个MIXGU获得更优的混合结构.实验结果表明,与基于单一门单元的神经网络相比,混合2类门单元的MIXGU神经网络具有更优的预测性能.