针对基于稀疏重建的图像超分辨率(SR)算法一般需要外部训练样本,重建质量取决于待重建图像与训练样本的相似度的问题,提出一种基于局部回归模型的图像超分辨率重建算法。利用局部图像结构会在不同的图像尺度对应位置重复出现的事实,...针对基于稀疏重建的图像超分辨率(SR)算法一般需要外部训练样本,重建质量取决于待重建图像与训练样本的相似度的问题,提出一种基于局部回归模型的图像超分辨率重建算法。利用局部图像结构会在不同的图像尺度对应位置重复出现的事实,建立从低到高分辨率图像块的非线性映射函数一阶近似模型用于超分辨率重建。其中,非线性映射函数的先验模型是直接对输入图像及其低频带图像的对应位样本块对通过字典学习的方法得到。重建图像块时利用图像中的非局部自相似性,对多个非局部自相似块分别应用一阶回归模型,加权综合得到高分辨率图像块。实验结果表明,该算法重建的图像与同样利用图像具有自相似性的相关超分辨率算法相比,峰值信噪比(PSNR)平均提高0.3~1.1 d B,主观重建效果亦有明显提高。展开更多
针对Shearlet收缩去噪引入的Gibbs伪影和"裂痕"现象,提出一种结合非局部自相似的Shearlet自适应收缩图像去噪方法。首先,对噪声图像进行多方向多尺度的Shearlet分解;然后,基于高斯比例混合(GSM)模型的Shearlet系数分布建模,...针对Shearlet收缩去噪引入的Gibbs伪影和"裂痕"现象,提出一种结合非局部自相似的Shearlet自适应收缩图像去噪方法。首先,对噪声图像进行多方向多尺度的Shearlet分解;然后,基于高斯比例混合(GSM)模型的Shearlet系数分布建模,利用贝叶斯最小二乘估计对Shearlet系数进行自适应收缩去噪,重构得到初始去噪图像;最后,利用非局域自相似模型对初始去噪图像进行滤波处理,得到最终的去噪图像。实验结果表明,所提方法在更好地保留边缘特征的同时,有效地去除噪声和收缩去噪引入的Gibbs伪影,该方法获得的峰值信噪比(PSNR)和结构自相似指标(SSIM)比基于非抽样剪切波变换(NSST)的硬阈值去噪方法提高1.41 d B和0.08;比非抽样Shearlet域GSM模型去噪方法提高1.04 d B和0.045;比基于三变量模型的剪切波去噪方法提高0.64 d B和0.025。展开更多
文摘针对基于稀疏重建的图像超分辨率(SR)算法一般需要外部训练样本,重建质量取决于待重建图像与训练样本的相似度的问题,提出一种基于局部回归模型的图像超分辨率重建算法。利用局部图像结构会在不同的图像尺度对应位置重复出现的事实,建立从低到高分辨率图像块的非线性映射函数一阶近似模型用于超分辨率重建。其中,非线性映射函数的先验模型是直接对输入图像及其低频带图像的对应位样本块对通过字典学习的方法得到。重建图像块时利用图像中的非局部自相似性,对多个非局部自相似块分别应用一阶回归模型,加权综合得到高分辨率图像块。实验结果表明,该算法重建的图像与同样利用图像具有自相似性的相关超分辨率算法相比,峰值信噪比(PSNR)平均提高0.3~1.1 d B,主观重建效果亦有明显提高。
文摘针对Shearlet收缩去噪引入的Gibbs伪影和"裂痕"现象,提出一种结合非局部自相似的Shearlet自适应收缩图像去噪方法。首先,对噪声图像进行多方向多尺度的Shearlet分解;然后,基于高斯比例混合(GSM)模型的Shearlet系数分布建模,利用贝叶斯最小二乘估计对Shearlet系数进行自适应收缩去噪,重构得到初始去噪图像;最后,利用非局域自相似模型对初始去噪图像进行滤波处理,得到最终的去噪图像。实验结果表明,所提方法在更好地保留边缘特征的同时,有效地去除噪声和收缩去噪引入的Gibbs伪影,该方法获得的峰值信噪比(PSNR)和结构自相似指标(SSIM)比基于非抽样剪切波变换(NSST)的硬阈值去噪方法提高1.41 d B和0.08;比非抽样Shearlet域GSM模型去噪方法提高1.04 d B和0.045;比基于三变量模型的剪切波去噪方法提高0.64 d B和0.025。