期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于新型卷积神经网络的非侵入式负载监测方法
被引量:
9
1
作者
马临超
杨捷
+1 位作者
肖鹏
曾杰
《智慧电力》
北大核心
2022年第4期96-102,共7页
现有非侵入式负载监测技术处理负载规模变化的能力弱,且随着负载的种类复杂化与数量的增多,其具有估计精度不高的问题。建立了一种考虑用户用能多时间尺度耦合特性,并具有规模化处理能力的新型卷积神经网络,以提高复杂规模化负载估计的...
现有非侵入式负载监测技术处理负载规模变化的能力弱,且随着负载的种类复杂化与数量的增多,其具有估计精度不高的问题。建立了一种考虑用户用能多时间尺度耦合特性,并具有规模化处理能力的新型卷积神经网络,以提高复杂规模化负载估计的精确性。该神经网络包括多时间尺度感知与特征提取模块、自我关注模块和对抗损失模块等,多时间尺度感知与特征提取模块可获取与整合不同时间尺度负载数据的耦合特征,自我关注模块和对抗损失模块根据耦合特性来进一步提高监测模型的估计精度。最后,通过仿真分析验证了所提方法的有效性和优越性。
展开更多
关键词
非
侵入
性
负载监测
(
nilm
)
卷积神经网络
自我注意机制
生成对抗网络
能量分解
下载PDF
职称材料
题名
基于新型卷积神经网络的非侵入式负载监测方法
被引量:
9
1
作者
马临超
杨捷
肖鹏
曾杰
机构
河南工学院电气工程与自动化学院
云南电网有限责任公司
东北电力大学电气工程学院
出处
《智慧电力》
北大核心
2022年第4期96-102,共7页
基金
国家自然科学基金资助项目(51777027)。
文摘
现有非侵入式负载监测技术处理负载规模变化的能力弱,且随着负载的种类复杂化与数量的增多,其具有估计精度不高的问题。建立了一种考虑用户用能多时间尺度耦合特性,并具有规模化处理能力的新型卷积神经网络,以提高复杂规模化负载估计的精确性。该神经网络包括多时间尺度感知与特征提取模块、自我关注模块和对抗损失模块等,多时间尺度感知与特征提取模块可获取与整合不同时间尺度负载数据的耦合特征,自我关注模块和对抗损失模块根据耦合特性来进一步提高监测模型的估计精度。最后,通过仿真分析验证了所提方法的有效性和优越性。
关键词
非
侵入
性
负载监测
(
nilm
)
卷积神经网络
自我注意机制
生成对抗网络
能量分解
Keywords
nilm
convolutional neural network
self-attention
generate adversarial network
energy disaggregation
分类号
TM930 [电气工程—电力电子与电力传动]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于新型卷积神经网络的非侵入式负载监测方法
马临超
杨捷
肖鹏
曾杰
《智慧电力》
北大核心
2022
9
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部