The characterization of non-stationary signal requires joint time and frequency information. However, time and frequency are a pair of non-commuting variables that cannot constitute a joint probability density in the ...The characterization of non-stationary signal requires joint time and frequency information. However, time and frequency are a pair of non-commuting variables that cannot constitute a joint probability density in the time-frequency plane. The time-frequency distributions have difficult interpretation problems arising from negative and complex values or spurious components. In this paper, we get time-frequency information from the marginal distributions in rotated directions in the time-frequency plane. The rigorous probability interpretation of the marginal distributions is without any ambiguities. This time-frequency transformation is similar to the computerized axial tomography (CT or CAT) and is applied to signal analysis and signal detection and reveals a lot of advantages especially in the signal detection of the low signal/noise (S/N).展开更多
基金Supported by the Open Project of the Key Laboratory of Jiangsu Province (Grant No. KJS03078)
文摘The characterization of non-stationary signal requires joint time and frequency information. However, time and frequency are a pair of non-commuting variables that cannot constitute a joint probability density in the time-frequency plane. The time-frequency distributions have difficult interpretation problems arising from negative and complex values or spurious components. In this paper, we get time-frequency information from the marginal distributions in rotated directions in the time-frequency plane. The rigorous probability interpretation of the marginal distributions is without any ambiguities. This time-frequency transformation is similar to the computerized axial tomography (CT or CAT) and is applied to signal analysis and signal detection and reveals a lot of advantages especially in the signal detection of the low signal/noise (S/N).