Graphite‐like carbon nitride(g‐C3N4)‐based compounds have attracted considerable attention because of their excellent photocatalytic performance.In this work,a novel direct Z‐scheme system constructed from two‐di...Graphite‐like carbon nitride(g‐C3N4)‐based compounds have attracted considerable attention because of their excellent photocatalytic performance.In this work,a novel direct Z‐scheme system constructed from two‐dimensional(2D)g‐C3N4nanoplates and zero‐dimensional(0D)MoS2quantum dots(QDs)was prepared through the combination of a hydrothermal process and microemulsion preparation.The morphologies,structures,and optical properties of the as‐prepared photocatalysts were characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,atomic force microscopy,transmission electron microscopy,and UV‐vis diffuse reflectance spectroscopy.In addition,the photocatalytic performances of the prepared2D/0D hybrid composites were evaluated based on the photodegradation of rhodamine B under visible‐light irradiation.The results demonstrated that the introduction of MoS2QDs to g‐C3N4greatly enhanced the photocatalytic efficiency.For the optimum7%MoS2QD/g‐C3N4photocatalyst,the degradation rate constant was8.8times greater than that of pure g‐C3N4under visible‐light irradiation.Photocurrent and electrochemical impedance spectroscopy results further demonstrated that the MoS2QD/g‐C3N4composites exhibited higher photocurrent density and lower chargetransfer resistance than those of the pure g‐C3N4or MoS2QDs.Active species trapping,terephthalic acid photoluminescence,and nitro blue tetrazolium transformation experiments were performed to investigate the evolution of reactive oxygen species,including hydroxyl radicals and superoxide radicals.The possible enhanced photocatalytic mechanism was attributed to a direct Z‐scheme system,which not only can increase the separation efficiency of photogenerated electron‐hole pairs but also possesses excellent oxidation and reduction ability for high photocatalytic performances.This work provides an effective synthesis approach and insight to help develop other C3N4‐based direct Z‐scheme photocatalytic systems for environmental purification and energy 展开更多
Higher-order topological insulators(HOTIs),with topological corner or hinge states,have emerged as a thriving topic in the field of topological physics.However,few connections have been found for HOTIs with well-explo...Higher-order topological insulators(HOTIs),with topological corner or hinge states,have emerged as a thriving topic in the field of topological physics.However,few connections have been found for HOTIs with well-explored first-order topological insulators.Recently a proposal asserted that a significant bridge can be established between the HOTIs and Z2 topological insulators.When subjected to an inplane Zeeman field,corner states,the signature of the HOTIs,can be induced in a Z2 topological insulator.Such Zeeman fields can be produced,for example,by the ferromagnetic proximity effect or magnetic atom doping,which drastically increases the experimental complexity.Here,we show that a phononic crystal,designed as a bilayer of coupled acoustic cavities,exactly hosts the Kane-Mele model with built-in in-plane Zeeman fields.The helical edge states along the zigzag edges are gapped,and the corner states,localized spatially at the corners of the samples,appear in the gap.This verifies the Zeeman field induced higher-order topology.We further demonstrate the intriguing contrast properties of the corner states at the outer and inner corners in a hexagonal ring-shaped sample.展开更多
Rational Univariate Representation (RUR) of zero-dimensional ideals is used to describe the zeros of zero-dimensional ideals and RUR has been studied extensively. In 1999, Roullier proposed an efficient algorithm to...Rational Univariate Representation (RUR) of zero-dimensional ideals is used to describe the zeros of zero-dimensional ideals and RUR has been studied extensively. In 1999, Roullier proposed an efficient algorithm to compute RUR of zero-dimensional ideals. In this paper, we will present a new algorithm to compute Polynomial Univariate Representation (PUR) of zero-dimensional ideals. The new algorithm is based on some interesting properties of Grobner basis. The new algorithm also provides a method for testing separating elements.展开更多
基金supported by National Natural Science Foundation of China(51672113)Six Talent Peaks Project in Jiangsu Province(2015-XCL-026)+3 种基金Natural Science Foundation of Jiangsu Province(BK20171299)State Key Laboratory of Photocatalysis on Energy and Environment(SKLPEE-KF201705),Fuzhou UniversityState Key Laboratory of Advanced Technology for Materials Synthesis and Processing(2016-KF-10),Wuhan University of Technologythe Qing Lan Project Foundation of Jiangsu Province~~
文摘Graphite‐like carbon nitride(g‐C3N4)‐based compounds have attracted considerable attention because of their excellent photocatalytic performance.In this work,a novel direct Z‐scheme system constructed from two‐dimensional(2D)g‐C3N4nanoplates and zero‐dimensional(0D)MoS2quantum dots(QDs)was prepared through the combination of a hydrothermal process and microemulsion preparation.The morphologies,structures,and optical properties of the as‐prepared photocatalysts were characterized by X‐ray diffraction,X‐ray photoelectron spectroscopy,atomic force microscopy,transmission electron microscopy,and UV‐vis diffuse reflectance spectroscopy.In addition,the photocatalytic performances of the prepared2D/0D hybrid composites were evaluated based on the photodegradation of rhodamine B under visible‐light irradiation.The results demonstrated that the introduction of MoS2QDs to g‐C3N4greatly enhanced the photocatalytic efficiency.For the optimum7%MoS2QD/g‐C3N4photocatalyst,the degradation rate constant was8.8times greater than that of pure g‐C3N4under visible‐light irradiation.Photocurrent and electrochemical impedance spectroscopy results further demonstrated that the MoS2QD/g‐C3N4composites exhibited higher photocurrent density and lower chargetransfer resistance than those of the pure g‐C3N4or MoS2QDs.Active species trapping,terephthalic acid photoluminescence,and nitro blue tetrazolium transformation experiments were performed to investigate the evolution of reactive oxygen species,including hydroxyl radicals and superoxide radicals.The possible enhanced photocatalytic mechanism was attributed to a direct Z‐scheme system,which not only can increase the separation efficiency of photogenerated electron‐hole pairs but also possesses excellent oxidation and reduction ability for high photocatalytic performances.This work provides an effective synthesis approach and insight to help develop other C3N4‐based direct Z‐scheme photocatalytic systems for environmental purification and energy
基金supported by the National Natural Science Foundation of China(11890701,11974120,11974005,12074128,12074232,12125406,and 12174455)the National Key R&D Program of China(2018YFA0305800)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2019B151502012,2021B1515020086,and 2021A1515010347)the Science and Technology Projects in Guangzhou(202102020960)。
文摘Higher-order topological insulators(HOTIs),with topological corner or hinge states,have emerged as a thriving topic in the field of topological physics.However,few connections have been found for HOTIs with well-explored first-order topological insulators.Recently a proposal asserted that a significant bridge can be established between the HOTIs and Z2 topological insulators.When subjected to an inplane Zeeman field,corner states,the signature of the HOTIs,can be induced in a Z2 topological insulator.Such Zeeman fields can be produced,for example,by the ferromagnetic proximity effect or magnetic atom doping,which drastically increases the experimental complexity.Here,we show that a phononic crystal,designed as a bilayer of coupled acoustic cavities,exactly hosts the Kane-Mele model with built-in in-plane Zeeman fields.The helical edge states along the zigzag edges are gapped,and the corner states,localized spatially at the corners of the samples,appear in the gap.This verifies the Zeeman field induced higher-order topology.We further demonstrate the intriguing contrast properties of the corner states at the outer and inner corners in a hexagonal ring-shaped sample.
基金supported by National Key Basic Research Project of China(Grant No. 2011CB302400)National Natural Science Foundation of China (Grant Nos. 10971217,60821002/F02)
文摘Rational Univariate Representation (RUR) of zero-dimensional ideals is used to describe the zeros of zero-dimensional ideals and RUR has been studied extensively. In 1999, Roullier proposed an efficient algorithm to compute RUR of zero-dimensional ideals. In this paper, we will present a new algorithm to compute Polynomial Univariate Representation (PUR) of zero-dimensional ideals. The new algorithm is based on some interesting properties of Grobner basis. The new algorithm also provides a method for testing separating elements.