期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
鲸鱼优化支持向量机的短期风电功率预测
被引量:
47
1
作者
岳晓宇
彭显刚
林俐
《电力系统及其自动化学报》
CSCD
北大核心
2020年第2期146-150,共5页
为提高风电预测的精度,提出一种鲸鱼优化支持向量机SVM(support vector machine)的组合预测模型。该模型针对风电序列的非平稳波动特性,首先应用集合经验模态分解技术EEMD(ensemble empirical mode de?composition)将原始风电序列分解...
为提高风电预测的精度,提出一种鲸鱼优化支持向量机SVM(support vector machine)的组合预测模型。该模型针对风电序列的非平稳波动特性,首先应用集合经验模态分解技术EEMD(ensemble empirical mode de?composition)将原始风电序列分解为一系列不同特征尺度的子序列;并引入鲸鱼优化算法WOA(whales optimiza?tion algorithm)解决SVM中学习参数选择难的问题,进而对各子序列建立WOA_SVM预测模型;最后,叠加各子序列的预测值以得到最终预测值。仿真表明,所提EEMD_WOA_SVM模型具有较高的风电预测精度,显著优于其他基本模型。
展开更多
关键词
风电预测
集合
经验模态分解
技术
支持向量机
鲸鱼优化算法
组合模型
下载PDF
职称材料
题名
鲸鱼优化支持向量机的短期风电功率预测
被引量:
47
1
作者
岳晓宇
彭显刚
林俐
机构
华北电力大学电气与电子工程学院
广东工业大学自动化学院
出处
《电力系统及其自动化学报》
CSCD
北大核心
2020年第2期146-150,共5页
文摘
为提高风电预测的精度,提出一种鲸鱼优化支持向量机SVM(support vector machine)的组合预测模型。该模型针对风电序列的非平稳波动特性,首先应用集合经验模态分解技术EEMD(ensemble empirical mode de?composition)将原始风电序列分解为一系列不同特征尺度的子序列;并引入鲸鱼优化算法WOA(whales optimiza?tion algorithm)解决SVM中学习参数选择难的问题,进而对各子序列建立WOA_SVM预测模型;最后,叠加各子序列的预测值以得到最终预测值。仿真表明,所提EEMD_WOA_SVM模型具有较高的风电预测精度,显著优于其他基本模型。
关键词
风电预测
集合
经验模态分解
技术
支持向量机
鲸鱼优化算法
组合模型
Keywords
wind power forecasting
ensemble empirical mode decomposition (EEMD)
support vector machine (SVM)
whales optimization algorithm( WOA)
combination model
分类号
TM614 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
鲸鱼优化支持向量机的短期风电功率预测
岳晓宇
彭显刚
林俐
《电力系统及其自动化学报》
CSCD
北大核心
2020
47
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部