A model has been developed for the calculation of the microstructural evolution in a rapidly directionally solidified immiscible alloy. Numerical solutions have been performed for Al Pb immiscible alloys. The results ...A model has been developed for the calculation of the microstructural evolution in a rapidly directionally solidified immiscible alloy. Numerical solutions have been performed for Al Pb immiscible alloys. The results demonstrate that at a higher solidification velocity a constitutional supercooling region appears in front of the solid/liquid interface and the liquid liquid decomposition takes place in this region. A higher solidification velocity leads to a higher nucleation rate and, therefore, a higher number density of the minority phase droplets. As a result, the average radius of droplets in the melt at the solid/liquid interface decreases with the solidification velocity.展开更多
Immiscible alloys have attracted growing interest for their valuable physical and mechanical properties. However, their production is difficult because of metallurgical problems in which there is a serious tendency fo...Immiscible alloys have attracted growing interest for their valuable physical and mechanical properties. However, their production is difficult because of metallurgical problems in which there is a serious tendency for gravity separation in the region of the miscibility gap. So far the study on the liquid separation mechanism is still one of the important projects in the spatial materials science and the spatial fluid science. The studied results about the liquid phase separating mechanism of immiscible alloys are presented, at the same time the preparation techniques of homogeneous immiscible alloys are summarized, and the existing problems and the related researching areas in the future are also pointed out.展开更多
文摘A model has been developed for the calculation of the microstructural evolution in a rapidly directionally solidified immiscible alloy. Numerical solutions have been performed for Al Pb immiscible alloys. The results demonstrate that at a higher solidification velocity a constitutional supercooling region appears in front of the solid/liquid interface and the liquid liquid decomposition takes place in this region. A higher solidification velocity leads to a higher nucleation rate and, therefore, a higher number density of the minority phase droplets. As a result, the average radius of droplets in the melt at the solid/liquid interface decreases with the solidification velocity.
文摘Immiscible alloys have attracted growing interest for their valuable physical and mechanical properties. However, their production is difficult because of metallurgical problems in which there is a serious tendency for gravity separation in the region of the miscibility gap. So far the study on the liquid separation mechanism is still one of the important projects in the spatial materials science and the spatial fluid science. The studied results about the liquid phase separating mechanism of immiscible alloys are presented, at the same time the preparation techniques of homogeneous immiscible alloys are summarized, and the existing problems and the related researching areas in the future are also pointed out.