期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
结合桥梁难分样本优化的大清河流域水坝遥感检测
1
作者 郭勇 张琳翔 +1 位作者 许泽宇 蔡中祥 《自然资源遥感》 CSCD 北大核心 2024年第4期201-209,共9页
水坝的检测对于城市规划、生态环境评估等有着重要意义。目前基于遥感的水坝检测研究主要是基于样本集的算法改进或在小区域上的检测,缺乏在大尺度地学区域的实践应用。而在大区域中,水坝分布稀疏,地表存在更多的桥梁等地物会对水坝的... 水坝的检测对于城市规划、生态环境评估等有着重要意义。目前基于遥感的水坝检测研究主要是基于样本集的算法改进或在小区域上的检测,缺乏在大尺度地学区域的实践应用。而在大区域中,水坝分布稀疏,地表存在更多的桥梁等地物会对水坝的检测形成显著干扰。为应对这一问题,该文以大清河流域为例,研究大尺度区域内的水坝遥感检测。该文研究主要分为2个阶段,第一阶段是将容易与水坝混淆的桥梁作为难分负样本(即容易产生假阳性的样本)参加训练,基于DIOR公开数据集改进适合于水坝提取的神经网络结构;第二阶段是基于优化后的网络以及大区域多源样本数据进行微调训练获取模型,并实现大清河区域的水坝检测。优化后的模型在第一阶段测试中水坝检测F1分数为0.783,在第二阶段大清河流域检测得到了330处水坝,其结果与现有公开的水坝空间分布数据集GRandD相符,且更为详细。结果表明,结合桥梁样本优化训练后的模型可以有效避免对桥梁的误提取,从而提高检测精度。 展开更多
关键词 水坝 难分样本 大清河流域 CenterNet网络 目标检测
下载PDF
基于用户偏好挖掘生成对抗网络的推荐系统 被引量:3
2
作者 李广丽 滑瑾 +4 位作者 袁天 朱涛 邬任重 姬东鸿 张红斌 《计算机科学与探索》 CSCD 北大核心 2020年第5期803-814,共12页
用户偏好挖掘是推荐系统研究中的关键问题,它对于改善推荐质量具有非常重要的作用。提出用户偏好挖掘生成对抗网络(UPM-GAN),从两个角度深入分析用户隐含偏好:基于三元组损失算法对用户评分矩阵进行处理,挖掘难分负样本,以更好地确立正... 用户偏好挖掘是推荐系统研究中的关键问题,它对于改善推荐质量具有非常重要的作用。提出用户偏好挖掘生成对抗网络(UPM-GAN),从两个角度深入分析用户隐含偏好:基于三元组损失算法对用户评分矩阵进行处理,挖掘难分负样本,以更好地确立正样本,为准确刻画用户偏好奠定基础;基于奇异值分解(SVD++)算法构建UPM-GAN的生成模型,利用SVD++算法中的偏置信息及隐式参数描述用户隐含偏好,以提高评分预测精度。最后使用最新生成对抗网络(GAN)框架完成推荐系统训练,在MovieLens-100K、MovieLens-1M这两个主流数据集上展开实验仿真。实验表明UPM-GAN的Precision@K、均值平均精度(MAP)等多项指标均优于对比基线,且它还具有收敛速度快、训练过程平稳等优点。基于UPM-GAN的推荐系统具有一定实用价值。 展开更多
关键词 推荐系统 生成对抗网络(GAN) 用户偏好挖掘 奇异值分解(SVD++) 三元组损失 难分样本
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部