首先建立了一类具常恢复率,有效接触率依赖于总人数的SIQS传染病模型,并得到了阈值参数σ的表达式.如果σ≤1,则疾病消除平衡点全局稳定;如果σ>1,则存在唯一的传染病平衡点且是局部渐近稳定的。对于带有双线性传染率和标准传染率的...首先建立了一类具常恢复率,有效接触率依赖于总人数的SIQS传染病模型,并得到了阈值参数σ的表达式.如果σ≤1,则疾病消除平衡点全局稳定;如果σ>1,则存在唯一的传染病平衡点且是局部渐近稳定的。对于带有双线性传染率和标准传染率的两个相应模型,我们进一步证明了当σ>1时传染病平衡点的全局稳定性。其次对于带隔离项修正的传染率的相应模型,我们同样证明了传染病平衡点只要存在唯一就一定全局稳定的结论。上述结果均推广和改进了Hethcote et al.(2002)的相应工作。展开更多
文摘首先建立了一类具常恢复率,有效接触率依赖于总人数的SIQS传染病模型,并得到了阈值参数σ的表达式.如果σ≤1,则疾病消除平衡点全局稳定;如果σ>1,则存在唯一的传染病平衡点且是局部渐近稳定的。对于带有双线性传染率和标准传染率的两个相应模型,我们进一步证明了当σ>1时传染病平衡点的全局稳定性。其次对于带隔离项修正的传染率的相应模型,我们同样证明了传染病平衡点只要存在唯一就一定全局稳定的结论。上述结果均推广和改进了Hethcote et al.(2002)的相应工作。