期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
隐核最小二乘分类器在故障诊断中的应用
1
作者 陈国华 蓝玉龙 《计算机仿真》 CSCD 北大核心 2009年第9期153-155,280,共4页
作为一种基于正定核的学习方法,传统支持向量机(Support Vector Machine,SVM)能较好地解决小样本、非线性、过学习、维数灾和局部极小等问题,从而广泛应用于模式识别、回归估计等领域。当前,核方法及其在故障诊断中的应用引起了人们的... 作为一种基于正定核的学习方法,传统支持向量机(Support Vector Machine,SVM)能较好地解决小样本、非线性、过学习、维数灾和局部极小等问题,从而广泛应用于模式识别、回归估计等领域。当前,核方法及其在故障诊断中的应用引起了人们的广泛重视并成为研究热点。为解决传统支持向量对核函数正定性的限制及求解速度不高的缺陷,通过引入最小二乘支持向量机分类算法提高学习速度,采用隐核特征映射技术实现核函数的进一步扩展,提出了一种新的隐核最小二乘分类器(HKLSC)算法。将其应用于实际工业过程的故障诊断中并根据采集的滚动轴承数据进行了仿真。结果表明,该隐核分类器具有很好的故障诊断性能,为故障诊断提供了一种新的有效途径。 展开更多
关键词 支持向量机 函数 分类 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部