-
题名隐核最小二乘分类器在故障诊断中的应用
- 1
-
-
作者
陈国华
蓝玉龙
-
机构
广西电力职业技术学院电力工程系
广西师范大学计算机科学与信息工程学院
-
出处
《计算机仿真》
CSCD
北大核心
2009年第9期153-155,280,共4页
-
基金
广西自然科学基金项目(桂科自0832074)
-
文摘
作为一种基于正定核的学习方法,传统支持向量机(Support Vector Machine,SVM)能较好地解决小样本、非线性、过学习、维数灾和局部极小等问题,从而广泛应用于模式识别、回归估计等领域。当前,核方法及其在故障诊断中的应用引起了人们的广泛重视并成为研究热点。为解决传统支持向量对核函数正定性的限制及求解速度不高的缺陷,通过引入最小二乘支持向量机分类算法提高学习速度,采用隐核特征映射技术实现核函数的进一步扩展,提出了一种新的隐核最小二乘分类器(HKLSC)算法。将其应用于实际工业过程的故障诊断中并根据采集的滚动轴承数据进行了仿真。结果表明,该隐核分类器具有很好的故障诊断性能,为故障诊断提供了一种新的有效途径。
-
关键词
支持向量机
隐核函数
分类
故障诊断
-
Keywords
Support vector machine
Hidden kernel function
Classifier
Fault diagnosis
-
分类号
TP13
[自动化与计算机技术—控制理论与控制工程]
-