电网换相高压直流(line-commutated-converter based high voltage direct current,LCC-HVDC)输电系统单极闭锁时,由于换流站滤波器延时分组切除,风光水送端系统的新能源场站将承受持续性的过电压冲击。为了使水电机组参与抑制直流单极...电网换相高压直流(line-commutated-converter based high voltage direct current,LCC-HVDC)输电系统单极闭锁时,由于换流站滤波器延时分组切除,风光水送端系统的新能源场站将承受持续性的过电压冲击。为了使水电机组参与抑制直流单极闭锁引起的送端系统过电压,该文首先提出一种以直流换流站交流母线电压为输入信号的附加励磁控制,作为水电机组协调控制策略。直流单极闭锁时,水电机组基于换流站过电压幅值决定进相深度,动态吸收系统盈余无功,从而改善新能源场站的过电压状况。然后,基于励磁系统输出极限和机端电压稳定极限,提出协调控制策略中附加励磁控制器增益上限的整定规则。最后,以青海送端电网为研究背景,基于PSCAD/EMTDC仿真平台验证了协调控制策略的有效性。仿真结果表明:提出的控制策略有效发掘了水电机组参与系统紧急调压的能力,填补了送端系统无功调节功能的短时空缺,可有效抑制系统过电压,具有工程指导意义。展开更多
文摘电网换相高压直流(line-commutated-converter based high voltage direct current,LCC-HVDC)输电系统单极闭锁时,由于换流站滤波器延时分组切除,风光水送端系统的新能源场站将承受持续性的过电压冲击。为了使水电机组参与抑制直流单极闭锁引起的送端系统过电压,该文首先提出一种以直流换流站交流母线电压为输入信号的附加励磁控制,作为水电机组协调控制策略。直流单极闭锁时,水电机组基于换流站过电压幅值决定进相深度,动态吸收系统盈余无功,从而改善新能源场站的过电压状况。然后,基于励磁系统输出极限和机端电压稳定极限,提出协调控制策略中附加励磁控制器增益上限的整定规则。最后,以青海送端电网为研究背景,基于PSCAD/EMTDC仿真平台验证了协调控制策略的有效性。仿真结果表明:提出的控制策略有效发掘了水电机组参与系统紧急调压的能力,填补了送端系统无功调节功能的短时空缺,可有效抑制系统过电压,具有工程指导意义。