期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于DeepSORT算法的肉牛多目标跟踪方法 被引量:25
1
作者 张宏鸣 汪润 +3 位作者 董佩杰 孙红光 李书琴 王红艳 《农业机械学报》 EI CAS CSCD 北大核心 2021年第4期248-256,共9页
肉牛的运动行为反映其健康状况,在实际养殖环境下如何识别肉牛并对其进行跟踪,对感知肉牛的运动行为至关重要。基于YOLO v3改进算法(LSRCEM-YOLO),利用视频监控实现了实际养殖环境下的肉牛实时跟踪。该方法采用MobileNet v2作为目标检... 肉牛的运动行为反映其健康状况,在实际养殖环境下如何识别肉牛并对其进行跟踪,对感知肉牛的运动行为至关重要。基于YOLO v3改进算法(LSRCEM-YOLO),利用视频监控实现了实际养殖环境下的肉牛实时跟踪。该方法采用MobileNet v2作为目标检测骨干网络,根据肉牛分布不均、目标尺度变化较大的特点,提出通过添加长短距离语义增强模块(LSRCEM)进行多尺度融合,结合Mudeep重识别模型实现了肉牛多目标跟踪。结果表明:在目标检测方面,LSRCEM-YOLO的m AP值达到了92.3%,模型参数量仅为YOLO v3的10%,相比YOLO v3-tiny也降低了31.34%;在肉牛重识别方面,采用基于调整感受野的Mudeep模型,获得了更多的多尺度特征,其Rank-1指标达到了96.5%;多目标跟踪的多目标跟踪准确率相对于Deep SORT算法从32.3%提高到了45.2%,ID switch次数降低了69.2%。本文方法可为实际环境下的肉牛行为实时跟踪、行为感知提供技术参考。 展开更多
关键词 肉牛 多目标跟踪 目标检测 重识别 注意力机制 短距离语义增强模块
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部