为了解决财经微博文本中网民情感状态转移的时序数据分析问题,本文提出一个基于认知情感评价模型(Ortony,Clore&Collins,OCC)和长短期记忆模型(long short term memory,LSTM)的财经微博文本情感分类模型(OCC-LSTM)。基于OCC模型从...为了解决财经微博文本中网民情感状态转移的时序数据分析问题,本文提出一个基于认知情感评价模型(Ortony,Clore&Collins,OCC)和长短期记忆模型(long short term memory,LSTM)的财经微博文本情感分类模型(OCC-LSTM)。基于OCC模型从网民认知角度建立情感规则,对财经微博文本进行情感标注,并作为LSTM模型进行深度学习的训练集;基于LSTM模型,使用深度学习中的TensorFlow框架和Keras模块建立相应的实验模型,进行海量微博数据情感分类,并结合13家上市公司3年的微博文本数据进行实证研究和模型验证对比。实证研究结果发现本文提出的模型取得了89.45%的准确率,高于采用传统的机器学习方式的支持向量机方法 (support vector machine,SVM)和基于深度学习的半监督RAE方法 (semi-supervised recursive auto encoder)。展开更多
为了在交通拥堵预测算法中充分考虑各类因素的影响以及挖掘交通流数据隐含的深层特征,该文提出基于长短期记忆(Long-short term memory,LSTM)模型的交通拥堵预测方法。该方法充分考虑交通流特征、天气、节假日等因素,首先利用去噪自编...为了在交通拥堵预测算法中充分考虑各类因素的影响以及挖掘交通流数据隐含的深层特征,该文提出基于长短期记忆(Long-short term memory,LSTM)模型的交通拥堵预测方法。该方法充分考虑交通流特征、天气、节假日等因素,首先利用去噪自编码模型提取输入数据的核心特征,再使用LSTM模型长时记忆历史数据,二者结合对城市交通拥堵程度进行有效预测,通过与已有的交通拥堵预测模型进行对比,结果表明,该方法具有较高的预测准确度和鲁棒性,准确度能达到92%以上。展开更多
受降水量、径流等因素的影响,水库的长期水位预测面临巨大挑战。提出了一种新的基于长短期记忆(Long Short Term Memory, LSTM)网络的时间序列模型,对沂沭泗流域中的石梁河水库水位进行了预测和性能评价。该模型整合了降雨、水流和土壤...受降水量、径流等因素的影响,水库的长期水位预测面临巨大挑战。提出了一种新的基于长短期记忆(Long Short Term Memory, LSTM)网络的时间序列模型,对沂沭泗流域中的石梁河水库水位进行了预测和性能评价。该模型整合了降雨、水流和土壤含水量等历史信息,并通过实验获取最优预测步长,从而提高了模型的预测准确度,并且稳定性更好,避免出现较大的误差。实验使用Nash-Sutcliffe效率(NSE)、Pearson相关系数平方(R;)和绝对均方根误差(Root Mean Square Errors, RMSE)等评价指标,与基本的多层感知机模型和卷积神经网络(Convolutional Neural Networks, CNN)比较,得出如下结论:① LSTM模型的预测值不存在明显较小的波峰或波谷;②模型的预测精度不会随着预测时间步长的增加而急剧下降;③在真实的洪水事件预测中,雨量较小时不会引起预报线的波动,且预测洪峰时偏离度较小。当然,如何在大规模流域中应用该模型,以及对流域中的多个水库水位同时预测等问题,将在未来的工作中进行进一步的研究和分析。展开更多
为了克服人工拾取地震速度谱效率低、耗时长等缺点,提出了一种基于深度学习的地震叠加速度自动拾取方法。其核心是模仿地震数据处理人员在速度谱上拾取速度的行为和过程,实现叠加速度的自动拾取。将速度谱视为图像,并依据所拾取的“时间...为了克服人工拾取地震速度谱效率低、耗时长等缺点,提出了一种基于深度学习的地震叠加速度自动拾取方法。其核心是模仿地震数据处理人员在速度谱上拾取速度的行为和过程,实现叠加速度的自动拾取。将速度谱视为图像,并依据所拾取的“时间-速度”对具有时间序列的特点,设计了一个复杂的能用于速度拾取的卷积神经网络(convolutional neural network,CNN)和长短期记忆(long-short term memory,LSTM)模型混合结构神经网络模型。该模型经过训练,可以对输入的速度谱进行自动拾取,并输出“时间速度”对序列。理论和实际地震数据测试结果表明,相对于基于反演过程的传统速度拾取算法,基于深度学习的地震速度谱自动拾取方法无需附加任何约束和干预,不仅实现了完全自动化的速度拾取,而且具有更高的拾取精度。展开更多
针对现有位置预测研究多数忽略时间和空间之间关联性的问题,提出一种基于时空特性的长短期记忆模型(ST-LSTM)。基于LSTM网络添加单独处理用户移动行为时空信息的时空门,并考虑用户签到的时间及空间因素,从而使模型具有时空特性。在ST-L...针对现有位置预测研究多数忽略时间和空间之间关联性的问题,提出一种基于时空特性的长短期记忆模型(ST-LSTM)。基于LSTM网络添加单独处理用户移动行为时空信息的时空门,并考虑用户签到的时间及空间因素,从而使模型具有时空特性。在ST-LSTM网络中引入个人修正因子,对每类用户的输出结果进行修正,在确保基本特性的基础上突出个性化,更好地学习每类用户的行为轨迹特征,同时在保证ST-LSTM网络特性的前提下给出 2种 ST-LSTM网络的简化变体模型。在公开数据集上的测试结果表明,与主流位置预测方法相比,该预测模型精确率、召回率、 F 1值都有明显提升。展开更多
依托济南市济泺路穿黄隧道东线工程,选取1130组掘进数据,按照施工顺序划分数据集,采用粗细程度、软硬程度、密实程度和渗透能力4个维度描述土体的物理力学状态,分别建立基于长短期记忆模型(Long-Short Term Memory,LSTM)、随机森林模型(...依托济南市济泺路穿黄隧道东线工程,选取1130组掘进数据,按照施工顺序划分数据集,采用粗细程度、软硬程度、密实程度和渗透能力4个维度描述土体的物理力学状态,分别建立基于长短期记忆模型(Long-Short Term Memory,LSTM)、随机森林模型(Random Forest)和BP神经网络的盾构隧道掘进参数预测模型,详细对比分析3种模型对总推力和掘进速度的预测效果。研究表明:(1)LSTM模型在按施工顺序预测盾构总推力和掘进速度时,平均相对误差仅为3.72%和7.41%,模型训练时间均在20 s以内,整体表现优于随机森林模型和BP神经网络;(2)在地形发生剧烈变化以及盾构掘进线路在直线与平曲线过渡时,总推力和掘进速度出现较大波动,LSTM模型预测结果相对误差偏大的组数仅占4%与10.2%,且总体误差满足施工要求;(3)随机森林模型预测结果的相对误差在总推力和掘进速度剧烈波动的环段处偏大,数量偏多,因此在按施工顺序预测时不是优选。展开更多
太阳能光伏产业近年发展迅速,准确诊断光伏组件故障位置及类型可以提升运维人员的工作效率。提出一种基于卷积神经网络-长短期记忆模型(Convolutional Neural Networks-Long Short Term Memory,CNN-LSTM)的深度学习诊断模型,利用电站原...太阳能光伏产业近年发展迅速,准确诊断光伏组件故障位置及类型可以提升运维人员的工作效率。提出一种基于卷积神经网络-长短期记忆模型(Convolutional Neural Networks-Long Short Term Memory,CNN-LSTM)的深度学习诊断模型,利用电站原有设备就可完成检测任务。首先提出了一种依据电流值的组件故障分类方式;然后,检测模型根据光伏阵列布局特点设计了一种特征提取算法,分别提取光伏阵列电流横向与纵向特征,来获取空间与时间上的特性;再通过CNN网络来对横向特征做进一步的提取与纵向特征的压缩,以解决特征种类单一及训练缓慢的问题;最终进入LSTM神经网络来完成对光伏组件的故障诊断。展开更多
文摘为了解决财经微博文本中网民情感状态转移的时序数据分析问题,本文提出一个基于认知情感评价模型(Ortony,Clore&Collins,OCC)和长短期记忆模型(long short term memory,LSTM)的财经微博文本情感分类模型(OCC-LSTM)。基于OCC模型从网民认知角度建立情感规则,对财经微博文本进行情感标注,并作为LSTM模型进行深度学习的训练集;基于LSTM模型,使用深度学习中的TensorFlow框架和Keras模块建立相应的实验模型,进行海量微博数据情感分类,并结合13家上市公司3年的微博文本数据进行实证研究和模型验证对比。实证研究结果发现本文提出的模型取得了89.45%的准确率,高于采用传统的机器学习方式的支持向量机方法 (support vector machine,SVM)和基于深度学习的半监督RAE方法 (semi-supervised recursive auto encoder)。
文摘为了在交通拥堵预测算法中充分考虑各类因素的影响以及挖掘交通流数据隐含的深层特征,该文提出基于长短期记忆(Long-short term memory,LSTM)模型的交通拥堵预测方法。该方法充分考虑交通流特征、天气、节假日等因素,首先利用去噪自编码模型提取输入数据的核心特征,再使用LSTM模型长时记忆历史数据,二者结合对城市交通拥堵程度进行有效预测,通过与已有的交通拥堵预测模型进行对比,结果表明,该方法具有较高的预测准确度和鲁棒性,准确度能达到92%以上。
文摘受降水量、径流等因素的影响,水库的长期水位预测面临巨大挑战。提出了一种新的基于长短期记忆(Long Short Term Memory, LSTM)网络的时间序列模型,对沂沭泗流域中的石梁河水库水位进行了预测和性能评价。该模型整合了降雨、水流和土壤含水量等历史信息,并通过实验获取最优预测步长,从而提高了模型的预测准确度,并且稳定性更好,避免出现较大的误差。实验使用Nash-Sutcliffe效率(NSE)、Pearson相关系数平方(R;)和绝对均方根误差(Root Mean Square Errors, RMSE)等评价指标,与基本的多层感知机模型和卷积神经网络(Convolutional Neural Networks, CNN)比较,得出如下结论:① LSTM模型的预测值不存在明显较小的波峰或波谷;②模型的预测精度不会随着预测时间步长的增加而急剧下降;③在真实的洪水事件预测中,雨量较小时不会引起预报线的波动,且预测洪峰时偏离度较小。当然,如何在大规模流域中应用该模型,以及对流域中的多个水库水位同时预测等问题,将在未来的工作中进行进一步的研究和分析。
文摘为了克服人工拾取地震速度谱效率低、耗时长等缺点,提出了一种基于深度学习的地震叠加速度自动拾取方法。其核心是模仿地震数据处理人员在速度谱上拾取速度的行为和过程,实现叠加速度的自动拾取。将速度谱视为图像,并依据所拾取的“时间-速度”对具有时间序列的特点,设计了一个复杂的能用于速度拾取的卷积神经网络(convolutional neural network,CNN)和长短期记忆(long-short term memory,LSTM)模型混合结构神经网络模型。该模型经过训练,可以对输入的速度谱进行自动拾取,并输出“时间速度”对序列。理论和实际地震数据测试结果表明,相对于基于反演过程的传统速度拾取算法,基于深度学习的地震速度谱自动拾取方法无需附加任何约束和干预,不仅实现了完全自动化的速度拾取,而且具有更高的拾取精度。
文摘针对现有位置预测研究多数忽略时间和空间之间关联性的问题,提出一种基于时空特性的长短期记忆模型(ST-LSTM)。基于LSTM网络添加单独处理用户移动行为时空信息的时空门,并考虑用户签到的时间及空间因素,从而使模型具有时空特性。在ST-LSTM网络中引入个人修正因子,对每类用户的输出结果进行修正,在确保基本特性的基础上突出个性化,更好地学习每类用户的行为轨迹特征,同时在保证ST-LSTM网络特性的前提下给出 2种 ST-LSTM网络的简化变体模型。在公开数据集上的测试结果表明,与主流位置预测方法相比,该预测模型精确率、召回率、 F 1值都有明显提升。
文摘依托济南市济泺路穿黄隧道东线工程,选取1130组掘进数据,按照施工顺序划分数据集,采用粗细程度、软硬程度、密实程度和渗透能力4个维度描述土体的物理力学状态,分别建立基于长短期记忆模型(Long-Short Term Memory,LSTM)、随机森林模型(Random Forest)和BP神经网络的盾构隧道掘进参数预测模型,详细对比分析3种模型对总推力和掘进速度的预测效果。研究表明:(1)LSTM模型在按施工顺序预测盾构总推力和掘进速度时,平均相对误差仅为3.72%和7.41%,模型训练时间均在20 s以内,整体表现优于随机森林模型和BP神经网络;(2)在地形发生剧烈变化以及盾构掘进线路在直线与平曲线过渡时,总推力和掘进速度出现较大波动,LSTM模型预测结果相对误差偏大的组数仅占4%与10.2%,且总体误差满足施工要求;(3)随机森林模型预测结果的相对误差在总推力和掘进速度剧烈波动的环段处偏大,数量偏多,因此在按施工顺序预测时不是优选。
文摘太阳能光伏产业近年发展迅速,准确诊断光伏组件故障位置及类型可以提升运维人员的工作效率。提出一种基于卷积神经网络-长短期记忆模型(Convolutional Neural Networks-Long Short Term Memory,CNN-LSTM)的深度学习诊断模型,利用电站原有设备就可完成检测任务。首先提出了一种依据电流值的组件故障分类方式;然后,检测模型根据光伏阵列布局特点设计了一种特征提取算法,分别提取光伏阵列电流横向与纵向特征,来获取空间与时间上的特性;再通过CNN网络来对横向特征做进一步的提取与纵向特征的压缩,以解决特征种类单一及训练缓慢的问题;最终进入LSTM神经网络来完成对光伏组件的故障诊断。