期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
融合SBAS-InSAR技术与TSO-LSTM模型的矿区地表沉降预测方法 被引量:6
1
作者 肖海平 夏益强 +1 位作者 刘小生 陈兰兰 《金属矿山》 CAS 北大核心 2023年第1期126-133,共8页
矿区由于重工业器械的使用和采矿活动频繁,其岩层和地表容易发生沉陷和变形,快速、准确地分析、预测地表沉降是实现高效防灾减灾、推进绿色矿山建设的重要手段。针对现有预测模型监测点过少、多源数据难以获取以及网络模型超参数难以确... 矿区由于重工业器械的使用和采矿活动频繁,其岩层和地表容易发生沉陷和变形,快速、准确地分析、预测地表沉降是实现高效防灾减灾、推进绿色矿山建设的重要手段。针对现有预测模型监测点过少、多源数据难以获取以及网络模型超参数难以确定等问题,提出了一种基于金枪鱼群(Tuna Swarm Optimization,TSO)优化长短时间记忆(Long Short-Term Memory,LSTM)网络模型超参数的深度学习预测方法,利用多个高相干性点的沉降时序实现矿区的精准预测。利用SBAS-InSAR技术处理50景覆盖德兴铜矿区的Sentinel-1 A升轨SAR影像,获取了该区域25465个高相干性点的沉降时间序列。利用TSO算法优化LSTM网络模型超参数,寻找出最适合该矿区沉降时序预测的LSTM网络模型,并使用优化后的LSTM网络模型分区域对沉降区开展沉降时序预测并计算预测精度。研究表明:使用TSO算法优化LSTM网络模型超参数是有效的,优化后的模型均方根误差至少降低了20%,平均绝对值误差至少降低了35%,预测均方根误差不超过2 mm,预测平均绝对误差不超过3 mm,模型平均预测精度超过95%。所提方法为确保安矿区全安全生产,实现科学防灾、减灾提供了技术支持。 展开更多
关键词 开采沉陷 深度学习 金枪鱼群优化 短时间记忆 沉降预测 SBAS-InSAR TSO-LSTM
下载PDF
基于滑动窗口和LSTM神经网络的锂离子电池建模方法 被引量:7
2
作者 张少凤 张清勇 +2 位作者 杨叶森 苏义鑫 熊斌宇 《储能科学与技术》 CAS CSCD 北大核心 2022年第1期228-239,共12页
为提高锂离子电池在复杂工况下的预测能力和建模精度,提出一种基于滑动窗口和长短时记忆(long short term memory,LSTM)神经网络的锂离子电池建模方法。首先建立了基于神经网络的锂离子电池模型,确定了神经网络的基本结构,通过LSTM层、... 为提高锂离子电池在复杂工况下的预测能力和建模精度,提出一种基于滑动窗口和长短时记忆(long short term memory,LSTM)神经网络的锂离子电池建模方法。首先建立了基于神经网络的锂离子电池模型,确定了神经网络的基本结构,通过LSTM层、向量拼接层和全连接层分别实现了时序特征提取、特征融合和回归预测。然后提出了滑动窗口的输入向量处理方法,滑动窗口每次向前推进一个时间点,通过限制时间窗口内所能处理的最大信元数对数据量进行限制,为多个LSTM层的并行计算和深隐层的拼接层和全连接层预留了计算量的裕度,实现了对模型中循环网络层深度的优化选择。为解决模型在多工况下运行的泛化问题,提出使用离线数据集的预训练和在线数据的参数修正的训练方法,通过大量离线数据集的反复训练,使模型学习电池的共性部分;再使用部分在线数据,对网络参数进行调整,将其应用于预测中。最后使用恒流/恒压、随机电流脉冲、大功率脉冲等多个工况的数据分别进行测试。结果表明,基于长短时记忆神经网络的建模方法能够准确预测电池输出电压和荷电状态。 展开更多
关键词 锂离子电池 模型 神经网络 短时间记忆 多时序特征提取 滑动窗口
下载PDF
基于LSTM的公共自行车服务点租还需求量预测 被引量:7
3
作者 陆凯韬 董红召 陈宁 《计算机测量与控制》 2017年第9期178-181,共4页
城市公共自行车系统(PBS)服务点自行车数量的再平衡是解决"租还车难"问题的关键,对服务点租还需求量的短时预测则是PBS再平衡的基础;通过分析PBS租还需求的内外关联影响因素,提出基于深度学习理论的LSTM(Long-Short Term Memo... 城市公共自行车系统(PBS)服务点自行车数量的再平衡是解决"租还车难"问题的关键,对服务点租还需求量的短时预测则是PBS再平衡的基础;通过分析PBS租还需求的内外关联影响因素,提出基于深度学习理论的LSTM(Long-Short Term Memory,长短时间记忆)单元的循环神经网络(Recurrent Neural Network,RNN)服务点租还需求量预测模型,并通过区域PBS平均出行OD,对预测模型的输入特征进行合理优化,实现PBS服务点租还需求量的短时预测;以杭州市下沙PBS服务区为实验对象,选取三组不同的输入时间步长对预测模型进行实践验证,结果显示:在选取的模型结构与输入特征下,采用循环神经网络对服务点租还需求量进行预测能够比传统前馈神经网络在结果上更加接近实际值,并且精度较为满意,表明了该预测方法可行有效。 展开更多
关键词 公共自行车 租还需求量预测 平均出行距离 深度学习 短时间记忆
下载PDF
Storm分布式计算框架下基于知识图谱的快速学习资源推荐
4
作者 刘莹 杨淑萍 张治国 《南京邮电大学学报(自然科学版)》 北大核心 2024年第3期93-99,共7页
针对在线学习资源推荐存在精度较低或实时性较差的问题,采用知识图谱进行用户及资源的知识表示,并采用长短时间记忆网络对用户资源特征差进行优化,从而将与用户特征差最小的资源推送给用户。首先,在获得在线学习记录样本后,利用知识图... 针对在线学习资源推荐存在精度较低或实时性较差的问题,采用知识图谱进行用户及资源的知识表示,并采用长短时间记忆网络对用户资源特征差进行优化,从而将与用户特征差最小的资源推送给用户。首先,在获得在线学习记录样本后,利用知识图谱进行实体特征关系的知识表示,并借助Storm分布式框架生成知识图谱中头尾实体及关系特征向量。接着,建立用户-资源实体的最小特征差目标函数,并采用长短时间记忆网络对最小特征差目标函数进行优化。最后,通过Storm分布式平台进行长短时间记忆网络的参数求解,从而快速生成稳定的相关资源推荐模型。实验结果表明,在Storm分布式框架下采用知识图谱和长短时间记忆网络实现在线资源推荐,可获得较高准确率及运行效率,在应对大规模资源的实时推荐方面具有较强的适应度。 展开更多
关键词 资源推荐 知识图谱 Storm框架 短时间记忆 TransD模型
下载PDF
基于EMD-MTL-LSTM的多特征综合能源负荷预测
5
作者 张未 余成波 +2 位作者 王士彬 何鑫 陈佳 《云南电业》 2023年第9期13-18,共6页
深入开展多特征综合能源负荷预测研究,对提高新能源的消纳具有重要工程意义,为此本文提出一种基于经验模态分解(Empirical Mode Decomposition,EMD)-多任务学习(multi-task learning,MTL)的长短时间记忆(long short-term memory,LSTM)... 深入开展多特征综合能源负荷预测研究,对提高新能源的消纳具有重要工程意义,为此本文提出一种基于经验模态分解(Empirical Mode Decomposition,EMD)-多任务学习(multi-task learning,MTL)的长短时间记忆(long short-term memory,LSTM)网络短期电力负荷预测算法.该方法利用EMD分解综合能源电、冷、热负荷、得到分解后的各个负荷模态量和残差量,运用门控循环单元建立多任务学习的共享层,用于挖掘各个负荷之间的耦合特征,最后通过LSTM网络进行负荷预测.本文研究表明:所提出的EMD-MTL-LSTM预测模型较LSTM,其均方根误差(root mean square error,RMSE)有9.68%的提升. 展开更多
关键词 经验模特分解 多任务学习 短时间记忆 综合能源系统 负荷预测
下载PDF
基于LSTM循环神经网络的泊位需求短时预测研究 被引量:3
6
作者 裘瑞清 周后盘 +2 位作者 吴辉 阮益权 石敏 《自动化技术与应用》 2019年第11期107-113,共7页
本文提出基于深度学习理论的LSTM(Long Short-Term Memory,长短期记忆)单元的循环神经网络泊位需求预测模型,根据前几个小时泊位需求变化量对后续时间点对应的泊位需求量进行预测。以杭州某大学为实验对象,采用随机两天和特定两天数据... 本文提出基于深度学习理论的LSTM(Long Short-Term Memory,长短期记忆)单元的循环神经网络泊位需求预测模型,根据前几个小时泊位需求变化量对后续时间点对应的泊位需求量进行预测。以杭州某大学为实验对象,采用随机两天和特定两天数据进行实践验证。结果显示:采用LSTM循环神经网络模对区域内泊位需求进行预测能够比传统方法在结果上更加接近实际值,并且精度较为满意,表明该预测方法可行有效。 展开更多
关键词 泊位需求预测 深度学习 短时间记忆 循环神经网络
下载PDF
基于特征选择的RF-LSTM模型成分股价格趋势预测 被引量:14
7
作者 刘玉敏 李洋 赵哲耘 《统计与决策》 CSSCI 北大核心 2021年第1期157-160,共4页
金融市场的股价波动是一种极其复杂的非线性系统。文章首先选取上证A股中有代表性的15只成分股,然后使用RF和CA-SFS对19个指标进行特征提取,最后使用LSTM模型对股票价格涨跌进行预测。每只股票,以5分钟一组,运用20组的数据来预测未来1... 金融市场的股价波动是一种极其复杂的非线性系统。文章首先选取上证A股中有代表性的15只成分股,然后使用RF和CA-SFS对19个指标进行特征提取,最后使用LSTM模型对股票价格涨跌进行预测。每只股票,以5分钟一组,运用20组的数据来预测未来1组的股票的涨跌,同时也滚动预测了未来48组的股票涨跌趋势。结果证明,文章所提模型兼顾分类效率和特征维数,相比浅层机器学习模型预测准确率提高了33.17%,相比结合PCA、LASSO等降维方法的LSTM模型准确率提高了11.45%,所提模型可以有效地预测股票价格趋势,有着较高的应用价值。 展开更多
关键词 短时间记忆神经网络 随机森林 趋势预测 序列前向选择 成分股
下载PDF
基于深度学习序贯检验的电源车故障诊断方法 被引量:7
8
作者 李炜 周丙相 蒋栋年 《系统仿真学报》 CAS CSCD 北大核心 2020年第4期638-648,共11页
针对电源车健康维护存在的问题,提出了一种基于长短时间记忆LSTM(Long Short Time Memory)网络与序贯概率比检验SPRT(Sequential Probability Ratio Test)融合的电源车故障诊断方法。该方法基于LSTM网络建立电源车的多变量时间序列模型... 针对电源车健康维护存在的问题,提出了一种基于长短时间记忆LSTM(Long Short Time Memory)网络与序贯概率比检验SPRT(Sequential Probability Ratio Test)融合的电源车故障诊断方法。该方法基于LSTM网络建立电源车的多变量时间序列模型,并引入SPRT方法进行自适应多样本故障诊断。经在电源车仿真系统上进行对比实验,结果表明LSTM诊断模型有更强的学习和映射能力,LSTM-SPRT融合的故障诊断方法,显著提高了电源车故障诊断的准确率和可靠性。 展开更多
关键词 短时间记忆网络 序贯概率比检验 电源车仿真系统 故障诊断
下载PDF
基于长期监测数据与LSTM网络的滑坡位移预测 被引量:6
9
作者 梁阳 肖婷 +2 位作者 胡程 任世聪 曾亮 《信号处理》 CSCD 北大核心 2022年第1期19-27,共9页
滑坡位移变化是危险性的直接表征,位移预测对防灾减灾至关重要。以八字门滑坡为例,基于十年监测数据和神经网络模型(LSTM、RNN)进行滑坡位移预测。用一次移动平均法将总位移分解为趋势项和周期项,趋势项采用三次多项式函数进行分段拟合... 滑坡位移变化是危险性的直接表征,位移预测对防灾减灾至关重要。以八字门滑坡为例,基于十年监测数据和神经网络模型(LSTM、RNN)进行滑坡位移预测。用一次移动平均法将总位移分解为趋势项和周期项,趋势项采用三次多项式函数进行分段拟合预测,通过神经网络模型和建立周期项与特征因子的关系并进行预测。其中,周期项特征因子根据位移影响因素初步选取,再通过Pearson相关性分析剔除无关因子。将预测的趋势项、周期项相加即为总位移预测值,对预测值与真实值进行误差分析,绝对误差为10 mm(LSTM)、24 mm(RNN),相关系数R;为0.9715(LSTM)、0.6675(RNN)。结果表明:LSTM在面对长时间序列时表现出更好的预测能力,该预测结果可以为八字门滑坡的防灾减灾工作提供理论参考。 展开更多
关键词 滑坡位移 监测数据 短时间记忆网络 位移预测
下载PDF
基于CNN和双向LSTM的房颤预测模型
10
作者 吴石远 陈艳红 +2 位作者 杨湘 高峰 顾进广 《计算机应用与软件》 北大核心 2024年第5期138-146,共9页
现有基于CNN的模型无法提取患者数据中的时序特征,而基于RNN的模型忽略了各医学变量的差异性特征。针对这种情况,提出一种结合CNN和RNN的房颤预测模型,利用一个独立CNN模块捕获电子病历数据中各医学变量间的差异性特征,同时使用一个独立... 现有基于CNN的模型无法提取患者数据中的时序特征,而基于RNN的模型忽略了各医学变量的差异性特征。针对这种情况,提出一种结合CNN和RNN的房颤预测模型,利用一个独立CNN模块捕获电子病历数据中各医学变量间的差异性特征,同时使用一个独立的RNN模块捕获电子病历数据中时序性特征以及各医学变量间的相关性特征。在真实医院数据集上的实验结果表明,与最新的一些基于电子病历数据的疾病预测方法相比,该模型在房颤的预测方面表现得更加突出,F1值提高了2.14%,AUC值提高了1.32%。 展开更多
关键词 心房颤动 疾病预测 电子病历 卷积神经网络 短时间记忆网络
下载PDF
一种基于改进VMD-PSO-CNN-LSTM的短期电价预测方法
11
作者 郭雪丽 华大鹏 +6 位作者 包鹏宇 李婷婷 姚楠 曹艳 王莹 张天东 胡钋 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第2期35-43,共9页
为了提升电价预测的准确性和预测模型的稳定性,提出一种基于改进VMD-PSO-CNN-LSTM的短期电价预测方法。首先,通过研究变分模态分解(variational mode decomposition,VMD)与电价影响因素的相关影响程度,并引入最大信息系数(MIC)构建VMD... 为了提升电价预测的准确性和预测模型的稳定性,提出一种基于改进VMD-PSO-CNN-LSTM的短期电价预测方法。首先,通过研究变分模态分解(variational mode decomposition,VMD)与电价影响因素的相关影响程度,并引入最大信息系数(MIC)构建VMD参数优化模型;然后,利用卷积神经网络(convolutional neural networks,CNN)与长短期记忆(long short-term memory,LSTM)神经网络对VMD分解得到的各模态分量进行预测。同时,根据深度可分离卷积结合电价时间规律,在CNN卷积部分构建多尺度的卷积特征提取结构,并利用粒子群优化算法优化包括CNN卷积层数量、CNN卷积神经元数量、LSTM隐藏层数量、LSTM记忆时间以及全连接层数等在内的参数,从而实现模型预测准确性和稳定性的提升。最后,对澳洲电力市场日前电价进行分析预测并与对照算法对比,结果表明该文算法具有更高的精度和更好的稳定性。 展开更多
关键词 电价预测 变分模态分解 粒子群优化算法 卷积神经网络 短时间记忆神经网络
下载PDF
基于并联深度学习网络的雷达有源干扰智能识别方法 被引量:5
12
作者 姜正云 舒汀 +1 位作者 何劲 郁文贤 《现代雷达》 CSCD 北大核心 2021年第10期9-14,共6页
针对传统的雷达有源干扰识别方法存在特征参数对干扰样式敏感,识别准确率不高等问题,提出了一种基于深度学习的雷达有源干扰智能识别方法,设计了一种残差网络(ResNet)和长短时间记忆网络(LSTM)相并联的新型网络结构。该方法基于多维度... 针对传统的雷达有源干扰识别方法存在特征参数对干扰样式敏感,识别准确率不高等问题,提出了一种基于深度学习的雷达有源干扰智能识别方法,设计了一种残差网络(ResNet)和长短时间记忆网络(LSTM)相并联的新型网络结构。该方法基于多维度信息联合处理,可提高干扰识别的稳健性。通过外场试验,对常规的6种雷达有源干扰样式进行识别性能验证,识别准确率达到94.80%,证明了该文的方法具有较好的工程应用前景。 展开更多
关键词 残差网络 短时间记忆网络 并联网络 雷达有源干扰识别 实测数据验证
下载PDF
基于双通道模型的航空发动机剩余寿命预测 被引量:1
13
作者 车鲁阳 高军伟 付惠琛 《空军工程大学学报》 CSCD 北大核心 2023年第6期42-49,共8页
针对现阶段航空发动机单一剩余使用寿命预测模型数据挖掘深度不足导致预测精度低的问题,提出一种双通道模型的预测方法。首先,构建双通道网络结构:通道一使用时间卷积网络,通过残差结构和空洞卷积使得网络具有更大的感受野和计算速度;... 针对现阶段航空发动机单一剩余使用寿命预测模型数据挖掘深度不足导致预测精度低的问题,提出一种双通道模型的预测方法。首先,构建双通道网络结构:通道一使用时间卷积网络,通过残差结构和空洞卷积使得网络具有更大的感受野和计算速度;通道二使用卷积长短时间记忆网络,提取多维时空特征,捕捉数据长期依赖关系。其次,利用多头注意力机制为双通道网络特征重新赋予权重。最后,将双通道网络进行特征融合输出,实现对航空发动机剩余寿命预测。使用涡扇发动机退化数据集进行实验验证,并与其它文献中提到的卷积双向长短时间记忆网络模型、多特征注意力模型、多头注意力模型、卷积门控单元循环神经网络模型进行对比。结果表明,所提模型在3种评价指标上均取得更好的表现,为航空发动机剩余寿命预测提供了一种新思路。 展开更多
关键词 航空发动机 寿命预测 时间卷积网络 卷积短时间记忆网络 多头注意力机制
下载PDF
基于时空注意力机制的多元时间序列异常检测
14
作者 梁李芳 关东海 +1 位作者 张吉 袁伟伟 《计算机科学》 CSCD 北大核心 2023年第S02期438-445,共8页
物联网系统被广泛应用于各种基础设施,系统中涉及许多相互连接的传感器,这些传感器产生大量的多元时间序列数据。由于物联网系统容易遭受网络攻击,多元时间序列异常检测方法被用于及时监测系统中发生的异常,这对于保障系统安全至关重要... 物联网系统被广泛应用于各种基础设施,系统中涉及许多相互连接的传感器,这些传感器产生大量的多元时间序列数据。由于物联网系统容易遭受网络攻击,多元时间序列异常检测方法被用于及时监测系统中发生的异常,这对于保障系统安全至关重要。然而,由于高维传感器数据关系复杂,现有的大多数异常检测方法难以明确学习多元时间序列的相关性,导致异常检测的准确率较低。因此,提出一种基于时空注意力机制的多元时间序列异常检测方法(STA)。首先,以图形结构的形式学习传感器间的关系,再使用多跳图注意力网络为图中每个传感器节点的多跳邻居节点分配不同的注意力权重,用于捕捉序列的空间相关性。其次,采用基于长短时间记忆网络的时间注意力机制自适应地选择相应的时间序列,用于学习序列的时间相关性。在4个真实世界传感器数据集上的实验结果表明,STA可以比基线方法更准确地检验时间序列中的异常,其F 1分数分别优于最佳基线31.03%,14.29%,15.91%和21.74%。此外,消融实验和灵敏度分析验证了模型中的关键组件的有效性。总的来说,STA可以有效捕捉多元时间序列中的空间和时间相关性,提高模型的异常检测性能。 展开更多
关键词 多元时间序列 注意力机制 图注意力网络 短时间记忆网络 时间相关性 空间相关性 异常检测
下载PDF
基于LSTM的汽轮机异常状态预警
15
作者 范世望 许伟明 +2 位作者 张祎 Maulidi Barasa 陈永照 《电气应用》 2023年第3期63-69,共7页
针对传统汽轮机缺乏有效的预警方法,时常处于被动维护的问题,提出一种基于长短期记忆网络(LSTM)的汽轮机状态预警方法。所提出的方法包含数据预处理模块、健康评价模块和异常预警模块三个模块。首先将源数据进行预处理,去除离群点以及... 针对传统汽轮机缺乏有效的预警方法,时常处于被动维护的问题,提出一种基于长短期记忆网络(LSTM)的汽轮机状态预警方法。所提出的方法包含数据预处理模块、健康评价模块和异常预警模块三个模块。首先将源数据进行预处理,去除离群点以及毛刺数据;然后基于自编码神经网络、余弦定理和3σ定理求得一种优化的健康指数;最后基于LSTM建立了汽轮机异常预警模型,并分析对比不同深度的LSTM网络模型与循环神经网络(RNN)预测的结果。最终结果表明:LSTM的最佳预测模型预测结果的平均绝对误差(MAPE)不超过4.31%,比传统RNN的最佳预测模型的准确度更高。因此,所提出的方法在汽轮机异常预警中具有较好的检测准确度。 展开更多
关键词 汽轮机 状态预警 短时间记忆网络 健康指数 自编码神经网络
下载PDF
一种特征融合的视频事故快速检测方法 被引量:2
16
作者 王晨 周威 章世祥 《交通运输工程与信息学报》 2022年第1期31-38,共8页
交通事故快速检测对于提升交通事故应急管理水平具有重要的现实意义。目前主流的视频事故检测算法较难同时满足高精度和低算力的要求,一定程度上制约了该技术的工程应用。针对存在的问题,本文提出了一种新的基于特征融合的视频事故快速... 交通事故快速检测对于提升交通事故应急管理水平具有重要的现实意义。目前主流的视频事故检测算法较难同时满足高精度和低算力的要求,一定程度上制约了该技术的工程应用。针对存在的问题,本文提出了一种新的基于特征融合的视频事故快速检测方法,以期在有限算力成本下同时获得较高的检测精度和较快的检测速度。模型将特征融合通过两个步骤实现:首先,提出了一种事故注意力模块,并将其嵌入至残差网络(ResNet50)中以从复杂交通场景中筛选事故相关的外观特征;之后,将该外观特征输入到卷积长短时间记忆网络(Conv-LSTM)中,实现外观特征的微调与运动特征的提取。训练后的模型在视频测试集上的精度达到88.89%,检测速度达到FPS>30。事故注意力模块的引入提高了模型的外观特征筛选能力,而Conv-LSTM相比一般LSTM模型在提取运动特征时可以更好地保留外观特征,相比传统基于运动特征的检测方法,该模型可以获得更高的精度。相比典型特征融合模型(如C3D),模型显著降低了计算复杂度,在检测速度上更快。研究结果表明,本文提出的事故检测模型可以在有限算力下较好地取得事故检测精度和速度的平衡,有望实现推广应用。 展开更多
关键词 智能交通 视频事故检测算法 残差网络 事故视觉注意力 卷积短时间记忆网络
下载PDF
基于多特征LSTM-Self-Attention文本情感分类 被引量:2
17
作者 谢斌红 董悦闰 +1 位作者 潘理虎 张英俊 《计算机仿真》 北大核心 2021年第11期479-484,489,共7页
针对自然语言处理情感分析领域中情感分类的问题,提出了一种基于多特征LSTM-Self-Attention的文本情感分类方法。方法以词向量和词性向量为输入,利用LSTM网络模型提取文本的序列特征,并通过在模型中引入自注意力机制(self-attention),... 针对自然语言处理情感分析领域中情感分类的问题,提出了一种基于多特征LSTM-Self-Attention的文本情感分类方法。方法以词向量和词性向量为输入,利用LSTM网络模型提取文本的序列特征,并通过在模型中引入自注意力机制(self-attention),从序列特征中提取出句子的语法和语义特征,减少了任务的复杂度。上述方法避免了传统循环神经网络存在的梯度消失和梯度爆炸的问题,极大缩短单词长距离依赖特征之间的距离,提高了分类效果。最后使用中文电影评论数据集进行实验验证,结果表明该方法特征提取能力更强,使得情感分类的准确率提升了1.74%。 展开更多
关键词 情感分类 短时间记忆网络模型 自注意力机制 词性向量
下载PDF
基于SAR图像的震后滑坡信息提取方法研究 被引量:1
18
作者 唐世超 陈超 谭毅 《激光杂志》 北大核心 2020年第10期58-62,共5页
地震导致滑坡灾害因其对生命和财产的巨大威胁而受到越来越的关注,利用遥感等技术快速提取滑坡信息,对于应急信息化建设和减少灾害造成的损失具有重要的现实意义。提出一种基于SAR(Synthetic Aperture Radar)图像变化检测的滑坡信息提... 地震导致滑坡灾害因其对生命和财产的巨大威胁而受到越来越的关注,利用遥感等技术快速提取滑坡信息,对于应急信息化建设和减少灾害造成的损失具有重要的现实意义。提出一种基于SAR(Synthetic Aperture Radar)图像变化检测的滑坡信息提取方法。两多时相滑坡图像利用对数比运算符生成差分图像,再用Gabor小波和模糊c均值来选择可靠样本,最后LSTM(Long Short-Term Memory)模型用于基于像素的SAR图像分类,由此通过分析提取出滑坡信息。以日本某地区地震前后的滑坡图像为例,采用JAXA提供的观测数据,来自高级陆地观测卫星2(ALOS-2),2016年3月7日之前的主要震动图像以及2016年5月16日之后的主要震动图像。实验结果表明,该方法优于实验中其他方法,总体精度在94%以上,误判较少,适合于快速滑坡信息提取。 展开更多
关键词 SAR图像 GABOR小波 短时间记忆网络 滑坡信息提取
下载PDF
深度学习在图像描述中的应用 被引量:1
19
作者 蔡晓龙 《电脑知识与技术》 2017年第8X期178-179,182,共3页
卷积神经网络在图像识别处理方面有着优秀的表现,但是只能处理单个输入,无法在多个输入之间建立联系。循环神经网络则在处理前后相关的序列信息上有着独特的优势。将两种神经网络算法联系起来,可以用于实现图像的语言序列描述,具体方法... 卷积神经网络在图像识别处理方面有着优秀的表现,但是只能处理单个输入,无法在多个输入之间建立联系。循环神经网络则在处理前后相关的序列信息上有着独特的优势。将两种神经网络算法联系起来,可以用于实现图像的语言序列描述,具体方法为:首先用卷积神经网络将图片的特征提取,后连接到LSTM模型,与输入的语言序列共同训练网络达到描述图像的目的。输入的数据应当根据需要做适当的预处理,以获得更好的表现。 展开更多
关键词 循环神经网络 卷积神经网络 短时间记忆模型 图像描述 数据预处理
下载PDF
基于深度学习的雾霾质量浓度预测研究 被引量:1
20
作者 王梓霖 《无线互联科技》 2019年第10期110-112,共3页
为有效地预测雾霾污染程度的主要评价指标PM2.5质量浓度,文章使用Blending集成学习策略并行连接CNN与LSTM,并建立基于CNN-LSTM集成学习的PM2.5质量浓度预测模型。经过真实数据验证,该模型对PM2.5质量浓度预测具有有效性,且相较于串联CNN... 为有效地预测雾霾污染程度的主要评价指标PM2.5质量浓度,文章使用Blending集成学习策略并行连接CNN与LSTM,并建立基于CNN-LSTM集成学习的PM2.5质量浓度预测模型。经过真实数据验证,该模型对PM2.5质量浓度预测具有有效性,且相较于串联CNN-LSTM预测模型具有优越性。 展开更多
关键词 卷积神经网络 短时间记忆网络 集成学习 PM2.5质量浓度预测
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部