The Changbai Mountains, located in northeastern China, show clear vertical zonation of vegetation types. Six different habitats,namely Pinus koraiensis mixed broad-leaved forest, Pinus koraiensis-Picea forest, spruce-...The Changbai Mountains, located in northeastern China, show clear vertical zonation of vegetation types. Six different habitats,namely Pinus koraiensis mixed broad-leaved forest, Pinus koraiensis-Picea forest, spruce-fir forest, Betula ermanii forest, alpine meadow and alpine semi-desert, at elevations ranging from 780 to 2 480 m, covering almost all ecosystems on the north slope of the Changbai Mountains, were investigated to determine: i) whether or not the community composition of soil mesofauna varied significantly at different elevations; ii) if different soil mesofauna groups would respond differently to elevation and iii) which factors influenced the spatial distribution of soil mesofauna along elevation. Soil mesofauna were collected from each habitat in spring(May),summer(July) and autumn(September) of 2009. The soil mesofauna communities were comprised of at least 44 groups and were dominated by Acari and Collembola, followed by Coleoptera, Diptera larvae and Enchytraeidae. The composition, diversity and abundance of soil mesofauna varied among the six habitats. Meanwhile, significant seasonal variations were observed in the composition,abundance and diversity of the soil mesofauna in each habitat. The taxonomic richness and Shannon index were affected by elevation and soil properties, while the abundance was only significantly affected by soil properties. With regard to taxa, the habitats and seasons had significant effects on almost all the abundances of the major taxonomic groups. The abundance of more taxonomic groups was significantly influenced by the soil properties, while those of Geophilomorpha, Araneae and other taxa were affected by elevation.It is concluded that the composition and spatial distribution of the soil mesofauna varied along the elevation gradient on the north slope of the Changbai Mountains, which might be largely related to the variations of the plant community, soil properties and climate change resulting from the elevation gradient.展开更多
The precipitation distribution quantity of canopy in broadleaved/Korean pine forest was measured during the growing season (Jun.–Sept.) in 2001 in the Changbai Mountain, Jilin Province, P. R. China. Results indicated...The precipitation distribution quantity of canopy in broadleaved/Korean pine forest was measured during the growing season (Jun.–Sept.) in 2001 in the Changbai Mountain, Jilin Province, P. R. China. Results indicated that the amounts of stemflow, throughfall, and interception were 37.39, 322.12 and 109.69 mm, accounting for 7.97%, 68.65% and 23.38% of the total rainfall, respectively. The rate of stemflow was higher in Jul. and Aug. than other months. The rate of throughfall dropped off from Jun. to Sept., however, rate of interception changed contrarily from 19.43% to 31.02% during the growing season. According to our analysis, the concentration of nutrient elements were arranged as Ca>Mg>N>K>Fe>P>Cu>Mn for rainfall, K>N>Mg>Ca>P>Fe>Mn>Cu for throughfall, and Mn>P>K>Cu>Fe>N>Mg>Ca for being leached through canopy. Nutrients concentration in stewflow and throughfall changed significantly when rainfall passed canopy, and concentration of all elements increased except for Ca and Mg.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 41471211 and 41171207)
文摘The Changbai Mountains, located in northeastern China, show clear vertical zonation of vegetation types. Six different habitats,namely Pinus koraiensis mixed broad-leaved forest, Pinus koraiensis-Picea forest, spruce-fir forest, Betula ermanii forest, alpine meadow and alpine semi-desert, at elevations ranging from 780 to 2 480 m, covering almost all ecosystems on the north slope of the Changbai Mountains, were investigated to determine: i) whether or not the community composition of soil mesofauna varied significantly at different elevations; ii) if different soil mesofauna groups would respond differently to elevation and iii) which factors influenced the spatial distribution of soil mesofauna along elevation. Soil mesofauna were collected from each habitat in spring(May),summer(July) and autumn(September) of 2009. The soil mesofauna communities were comprised of at least 44 groups and were dominated by Acari and Collembola, followed by Coleoptera, Diptera larvae and Enchytraeidae. The composition, diversity and abundance of soil mesofauna varied among the six habitats. Meanwhile, significant seasonal variations were observed in the composition,abundance and diversity of the soil mesofauna in each habitat. The taxonomic richness and Shannon index were affected by elevation and soil properties, while the abundance was only significantly affected by soil properties. With regard to taxa, the habitats and seasons had significant effects on almost all the abundances of the major taxonomic groups. The abundance of more taxonomic groups was significantly influenced by the soil properties, while those of Geophilomorpha, Araneae and other taxa were affected by elevation.It is concluded that the composition and spatial distribution of the soil mesofauna varied along the elevation gradient on the north slope of the Changbai Mountains, which might be largely related to the variations of the plant community, soil properties and climate change resulting from the elevation gradient.
基金This paper was supported by Chinese Academy of Science (KZCX2-406) Institute of Applied Ecology (SCXZD0101)+1 种基金 Chinese Academy of Science Shenyang and the Open Research Station of Changbai Mountain Forest Ecosystem.
文摘The precipitation distribution quantity of canopy in broadleaved/Korean pine forest was measured during the growing season (Jun.–Sept.) in 2001 in the Changbai Mountain, Jilin Province, P. R. China. Results indicated that the amounts of stemflow, throughfall, and interception were 37.39, 322.12 and 109.69 mm, accounting for 7.97%, 68.65% and 23.38% of the total rainfall, respectively. The rate of stemflow was higher in Jul. and Aug. than other months. The rate of throughfall dropped off from Jun. to Sept., however, rate of interception changed contrarily from 19.43% to 31.02% during the growing season. According to our analysis, the concentration of nutrient elements were arranged as Ca>Mg>N>K>Fe>P>Cu>Mn for rainfall, K>N>Mg>Ca>P>Fe>Mn>Cu for throughfall, and Mn>P>K>Cu>Fe>N>Mg>Ca for being leached through canopy. Nutrients concentration in stewflow and throughfall changed significantly when rainfall passed canopy, and concentration of all elements increased except for Ca and Mg.