The determination of intrinsic deformation parameters inducing grain refinement mechanism of dynamic recrystallization (DRX) contributes to the relative forming process design. For Ni80A superalloy, the processing map...The determination of intrinsic deformation parameters inducing grain refinement mechanism of dynamic recrystallization (DRX) contributes to the relative forming process design. For Ni80A superalloy, the processing maps were constructed by the derivation of the stress-strain data coming from a series of isothermal compression tests at temperatures of 1273^-1473 K and strain rates of 0.01-10 s^-1. According to the processing maps and microstructural validation, the deformation parameter windows with DRX mechanism were separated in an innovative deformation mechanism map. In addition, the deformation activation energy representing deformation energy barrier was introduced to further optimize such windows. Finally, the enhanced processing maps were constructed and the parameter domains corresponding to DRX mechanism and lower deformation barrier were determined as follows: at ε=0.3, domains: 1296-1350 K, 0.056-0.32 s^-1 and 1350-1375 K, 0.035-0.11 s^-1;at ε=0.5, domains: 1290-1348 K, 0.2-0.5 s^-1 and 1305-1370 K, 0.035-0.2 s^-1;at ε=0.7, domains: 1290-1355 K, 0.042-0.26 s^-1;at ε=0.9, domains: 1298-1348 K, 0.037-0.224 s^-1.展开更多
基金Project(cstc2018jcyj AX0459)supported by Chongqing Basic Research and Frontier Exploration,ChinaProject(P2017-020)supported by Open Fund Project of State Key Laboratory of Materials Processing and Die&Mould Technology,ChinaProject(SKLMTZZKT-2017M15)supported by Research Project of State Key Laboratory of Mechanical Transmission,China
文摘The determination of intrinsic deformation parameters inducing grain refinement mechanism of dynamic recrystallization (DRX) contributes to the relative forming process design. For Ni80A superalloy, the processing maps were constructed by the derivation of the stress-strain data coming from a series of isothermal compression tests at temperatures of 1273^-1473 K and strain rates of 0.01-10 s^-1. According to the processing maps and microstructural validation, the deformation parameter windows with DRX mechanism were separated in an innovative deformation mechanism map. In addition, the deformation activation energy representing deformation energy barrier was introduced to further optimize such windows. Finally, the enhanced processing maps were constructed and the parameter domains corresponding to DRX mechanism and lower deformation barrier were determined as follows: at ε=0.3, domains: 1296-1350 K, 0.056-0.32 s^-1 and 1350-1375 K, 0.035-0.11 s^-1;at ε=0.5, domains: 1290-1348 K, 0.2-0.5 s^-1 and 1305-1370 K, 0.035-0.2 s^-1;at ε=0.7, domains: 1290-1355 K, 0.042-0.26 s^-1;at ε=0.9, domains: 1298-1348 K, 0.037-0.224 s^-1.