A novel design of bimorph deformable mirror (DM) is presented. Compared with the bilayer lead zirconium titanate (PZT) ceramic structure, the bilayer lead magnesium niobate (PMN) ceramic structure has greater surface ...A novel design of bimorph deformable mirror (DM) is presented. Compared with the bilayer lead zirconium titanate (PZT) ceramic structure, the bilayer lead magnesium niobate (PMN) ceramic structure has greater surface displacement at the same thickness. The static simulation of the bilayer PMN bimorph deformable mirror with the finite element analysis (FEA) shows that the prototype has a stroke of above ± 23 μm, response time of 3 ms and nearly linear displacement characteristic with voltage rising. The results of simulation indicate that the bilayer PMN bimorph DM can satisfy the basic requirements of adaptive optics (AO) systems.展开更多
Initially studied and developed by students in universities, the very small pico satellites (with a mass lower than 1 kg) are more and more considered for science applications. In particular, there are plans to use ...Initially studied and developed by students in universities, the very small pico satellites (with a mass lower than 1 kg) are more and more considered for science applications. In particular, there are plans to use them in constellations of small spacecraft for remote sensing of various regions of the magnetosphere. They require a payload with specific size, weight and power consumption. In order to respond to this demand, new instruments have to be developed. Those instruments should exhibit at least the same performances as those used in larger satellites while fulfilling the specific requirements imposed by the satellites size. For this reason, the authors currently develop a xylophone bar magnetometer (XBM) based on micro-electromechanical systems (MEMS) with integrated detector electronics. The principle of this magnetometer is based on a classical resonating xylophone bar. A sinnsoidal current oscillating at the fundamental bending resonant frequency of the bar is applied through the device, and when an external magnetic field is present, the resulting Lorentz force yields the bar to vibrate at its fundamental mode with a displacement directly proportional to the amplitude in one direction of the ambient magnetic field. When designing a MEMS XBM, the detection method is a crucial aspect. The measurement method largely influences the geometry of the magnetometer as well as the manufacturing technology. Due to the constraints in terms of size, weight and power consumption, the two most promising measurement methods are capacitive and piezoelectric ones. Several designs including these measurement techniques are presented and simulated under realistic conditions. First, designs including lateral electrodes for capacitive measurement are tackled based on Silicon-On-Insulator (SOI) process. For the piezoelectric detection, a new configuration based on Lead Zirconate Titanate (PZT)/Pt structure is introduced and leads to much better sensitivity than the traditional Pt/PZT/Pt sandwich structure展开更多
基金supported by the National Natural Science Foundation of China (No.60908027)
文摘A novel design of bimorph deformable mirror (DM) is presented. Compared with the bilayer lead zirconium titanate (PZT) ceramic structure, the bilayer lead magnesium niobate (PMN) ceramic structure has greater surface displacement at the same thickness. The static simulation of the bilayer PMN bimorph deformable mirror with the finite element analysis (FEA) shows that the prototype has a stroke of above ± 23 μm, response time of 3 ms and nearly linear displacement characteristic with voltage rising. The results of simulation indicate that the bilayer PMN bimorph DM can satisfy the basic requirements of adaptive optics (AO) systems.
文摘Initially studied and developed by students in universities, the very small pico satellites (with a mass lower than 1 kg) are more and more considered for science applications. In particular, there are plans to use them in constellations of small spacecraft for remote sensing of various regions of the magnetosphere. They require a payload with specific size, weight and power consumption. In order to respond to this demand, new instruments have to be developed. Those instruments should exhibit at least the same performances as those used in larger satellites while fulfilling the specific requirements imposed by the satellites size. For this reason, the authors currently develop a xylophone bar magnetometer (XBM) based on micro-electromechanical systems (MEMS) with integrated detector electronics. The principle of this magnetometer is based on a classical resonating xylophone bar. A sinnsoidal current oscillating at the fundamental bending resonant frequency of the bar is applied through the device, and when an external magnetic field is present, the resulting Lorentz force yields the bar to vibrate at its fundamental mode with a displacement directly proportional to the amplitude in one direction of the ambient magnetic field. When designing a MEMS XBM, the detection method is a crucial aspect. The measurement method largely influences the geometry of the magnetometer as well as the manufacturing technology. Due to the constraints in terms of size, weight and power consumption, the two most promising measurement methods are capacitive and piezoelectric ones. Several designs including these measurement techniques are presented and simulated under realistic conditions. First, designs including lateral electrodes for capacitive measurement are tackled based on Silicon-On-Insulator (SOI) process. For the piezoelectric detection, a new configuration based on Lead Zirconate Titanate (PZT)/Pt structure is introduced and leads to much better sensitivity than the traditional Pt/PZT/Pt sandwich structure