Although carbon coating can improve the cycle life of anode for alkaline Zn batteries, the specific capacity reported is still lower compared with nanosized ZnO. Herein, carbon-coated nanosized ZnO(nano-ZnO@C) was syn...Although carbon coating can improve the cycle life of anode for alkaline Zn batteries, the specific capacity reported is still lower compared with nanosized ZnO. Herein, carbon-coated nanosized ZnO(nano-ZnO@C) was synthesized by one-step heat treatment from a gel precursor in N2. Commercial ZnO and homemade ZnO prepared similarly in air atmosphere were studied for comparison. Structure analysis displayed that both nano-ZnO@C and homemade ZnO had a porous hierarchical agglomerated architecture produced from primary nanoparticles with a diameter of approximately 100 nm as building blocks. Electrochemical performance measurements showed that nano-ZnO@C displayed the highest electrochemical activity, the lowest electrode resistance, the highest discharge capacity(622 m A·h/g), and the best cyclic stability. These properties were due to the combination of nanosized ZnO and the physical capping of carbon, which maintained the high utilization efficiency of nano-ZnO, and simultaneously prevented dendrite growth and densification of the anode.展开更多
NiOOH was prepared by chemical oxidation of β Ni(OH) 2. The physical characteristics and the chemical composition of the product were characterized by XRD, TG/DTA and ICP measurements. β NiOOH and the mixed samples ...NiOOH was prepared by chemical oxidation of β Ni(OH) 2. The physical characteristics and the chemical composition of the product were characterized by XRD, TG/DTA and ICP measurements. β NiOOH and the mixed samples of β NiOOH with γ MnO 2 in different ratios were charged/discharged in constant current, the results show that the addition of γ MnO 2 improves the discharge voltage plateau of nickel electrode and the optimum ratio of γ MnO 2 in the electrode is 25%. The cut off voltage of nickel electrode should be above 0 V( vs .Hg/HgO).展开更多
基金Project(51674301) supported by the National Natural Science Foundation of China
文摘Although carbon coating can improve the cycle life of anode for alkaline Zn batteries, the specific capacity reported is still lower compared with nanosized ZnO. Herein, carbon-coated nanosized ZnO(nano-ZnO@C) was synthesized by one-step heat treatment from a gel precursor in N2. Commercial ZnO and homemade ZnO prepared similarly in air atmosphere were studied for comparison. Structure analysis displayed that both nano-ZnO@C and homemade ZnO had a porous hierarchical agglomerated architecture produced from primary nanoparticles with a diameter of approximately 100 nm as building blocks. Electrochemical performance measurements showed that nano-ZnO@C displayed the highest electrochemical activity, the lowest electrode resistance, the highest discharge capacity(622 m A·h/g), and the best cyclic stability. These properties were due to the combination of nanosized ZnO and the physical capping of carbon, which maintained the high utilization efficiency of nano-ZnO, and simultaneously prevented dendrite growth and densification of the anode.
文摘NiOOH was prepared by chemical oxidation of β Ni(OH) 2. The physical characteristics and the chemical composition of the product were characterized by XRD, TG/DTA and ICP measurements. β NiOOH and the mixed samples of β NiOOH with γ MnO 2 in different ratios were charged/discharged in constant current, the results show that the addition of γ MnO 2 improves the discharge voltage plateau of nickel electrode and the optimum ratio of γ MnO 2 in the electrode is 25%. The cut off voltage of nickel electrode should be above 0 V( vs .Hg/HgO).