期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
锌钙系复合磷化膜的制备及其对16Mn钢腐蚀防护性能的影响
1
作者 张翼 杨滔 《电镀与精饰》 CAS 北大核心 2024年第8期1-10,共10页
通过磷酸盐沉淀结晶过程将聚四氟乙烯(PTFE)颗粒引入锌钙系磷化膜中获得锌钙系复合磷化膜,并研究PTFE颗粒分散液添加量和搅拌速度对锌钙系磷化膜的微观形貌、化学组成、PTFE颗粒含量、厚度以及对16Mn钢的腐蚀防护性能的影响。结果表明:... 通过磷酸盐沉淀结晶过程将聚四氟乙烯(PTFE)颗粒引入锌钙系磷化膜中获得锌钙系复合磷化膜,并研究PTFE颗粒分散液添加量和搅拌速度对锌钙系磷化膜的微观形貌、化学组成、PTFE颗粒含量、厚度以及对16Mn钢的腐蚀防护性能的影响。结果表明:改变PTFE颗粒分散液添加量或搅拌速度制备的不同锌钙系复合磷化膜晶粒大小较均匀,但是呈散乱无序状堆积,PTFE颗粒附着在晶粒表面并填补晶粒间孔洞,起到阻挡腐蚀介质并阻碍腐蚀反应的作用,明显提高锌钙系复合磷化膜的耐腐蚀性能。当搅拌速度为300 r/min时,添加25 mL/L PTFE颗粒分散液制备的锌钙系复合磷化膜晶粒表面附着较多PTFE颗粒,并且颗粒呈较均匀分散状态很好的填补晶粒间孔洞。该复合磷化膜含有Zn、Ca、P、O、C和F元素,PTFE颗粒的含量和厚度分别达到4.1%、12.4μm,具有最高的电荷转移电阻8528Ω·cm^(2)和低频阻抗值6015Ω·cm^(2),表现出优异的耐腐蚀性能,使16Mn钢的腐蚀防护性能明显优于常规锌钙系磷化膜。 展开更多
关键词 复合磷化 16MN钢 PTFE颗粒分散液 搅拌速度 腐蚀防护性能
下载PDF
齿轮用45钢锰系磷化膜和锰系复合磷化膜的性能比较 被引量:8
2
作者 赵利民 王树凤 《电镀与精饰》 CAS 北大核心 2020年第8期13-17,共5页
在含有聚四氟乙烯(PTFE)颗粒的磷化液中,通过共沉积在齿轮用45钢表面制备了锰系复合磷化膜,比较了锰系磷化膜和锰系复合磷化膜的微观形貌、成分、膜重、结合力、硬度、耐磨性能和耐腐蚀性能。结果表明,锰系复合磷化膜中含有Mn、P、Fe、O... 在含有聚四氟乙烯(PTFE)颗粒的磷化液中,通过共沉积在齿轮用45钢表面制备了锰系复合磷化膜,比较了锰系磷化膜和锰系复合磷化膜的微观形貌、成分、膜重、结合力、硬度、耐磨性能和耐腐蚀性能。结果表明,锰系复合磷化膜中含有Mn、P、Fe、O、C和F六种元素,与锰系磷化膜相比多了F元素,证实了一定量的PTFE颗粒通过共沉积进入磷化膜中。锰系磷化膜和锰系复合磷化膜的膜重接近,均为16 g/m2左右,且锰系磷化膜和锰系复合磷化膜均与基体结合良好。与锰系磷化膜相比,锰系复合磷化膜的硬度略有提高,硬度值约为253.4 HV,耐磨性能和耐腐蚀性能都明显改善。PTFE颗粒主要填充在磷化膜晶粒间隙处,形成固体润滑膜起到减轻摩擦的作用,同时有效阻止了腐蚀溶液的渗透,故锰系复合磷化膜表现出相对较高的硬度以及更好的耐磨性能和耐腐蚀性能。 展开更多
关键词 磷化 复合磷化 齿轮用45钢 耐腐蚀性能 耐磨性能
下载PDF
磷化温度对齿轮钢表面锰系复合磷化膜性能的影响 被引量:3
3
作者 赵利民 王树凤 《电镀与精饰》 CAS 北大核心 2021年第6期10-14,共5页
以齿轮钢作为基体制备锰系复合磷化膜,研究了磷化温度对锰系复合磷化膜的厚度、微观形貌、硬度和耐磨性能及与基体的结合强度的影响。结果表明:随着磷化温度从74℃升高到94℃,锰系复合磷化膜的厚度呈现先增加后降低的趋势,硬度先升高后... 以齿轮钢作为基体制备锰系复合磷化膜,研究了磷化温度对锰系复合磷化膜的厚度、微观形貌、硬度和耐磨性能及与基体的结合强度的影响。结果表明:随着磷化温度从74℃升高到94℃,锰系复合磷化膜的厚度呈现先增加后降低的趋势,硬度先升高后降低,致密性和耐磨性能先提高后下降,与基体的结合强度等级先降低后升高,但是都低于2级,满足要求。磷化温度为88℃时制备的锰系复合磷化膜厚度达到11.4μm,致密性较好,且该磷化膜中PTFE颗粒的质量分数达到7.01%,硬度达到260.6 HV,因此表现出良好的耐磨性能,优于其他锰系复合磷化膜。 展开更多
关键词 耐磨性能 复合磷化 齿轮钢 磷化温度
下载PDF
硝酸镧浓度对齿轮钢表面锰系复合磷化膜性能的影响 被引量:2
4
作者 赵利民 王树凤 《电镀与精饰》 CAS 北大核心 2022年第10期1-8,共8页
为进一步改善锰系复合磷化膜的耐磨性能和耐腐蚀性能,从而为齿轮钢提供更好的抗磨损和腐蚀防护作用,选用硝酸镧作为促进剂添加到磷化液中,在齿轮钢表面制备锰系复合磷化膜。研究了硝酸镧浓度对锰系复合磷化膜的微观形貌、聚四氟乙烯(PT... 为进一步改善锰系复合磷化膜的耐磨性能和耐腐蚀性能,从而为齿轮钢提供更好的抗磨损和腐蚀防护作用,选用硝酸镧作为促进剂添加到磷化液中,在齿轮钢表面制备锰系复合磷化膜。研究了硝酸镧浓度对锰系复合磷化膜的微观形貌、聚四氟乙烯(PTFE)颗粒质量分数、厚度、硬度、耐磨性能和耐腐蚀性能的影响。结果表明:硝酸镧浓度为60 mg/L时制备的锰系复合磷化膜晶粒细化,致密性较好,PTFE颗粒质量分数、厚度和硬度分别达到6.2%、11.8μm、310.4 HV,表现出优良的耐磨性能和耐腐蚀性能。该锰系复合磷化膜的摩擦系数和磨损失重相比于齿轮钢都降低了30%,腐蚀电流密度相比于齿轮钢降低了近两个数量级,可以为齿轮钢提供更好的抗磨损和腐蚀防护作用。在一定范围内硝酸镧浓度增加促使锰系复合磷化膜的晶粒细化,致密性逐步改善,同时促进PTFE颗粒伴随着磷化膜沉积起到自润滑减摩作用,有效地改善锰系复合磷化膜的耐磨性能。另外,PTFE颗粒伴随着磷化膜沉积较好地填充晶粒间空隙,使锰系复合磷化膜发生电化学腐蚀反应的难度增加,腐蚀倾向减弱。 展开更多
关键词 复合磷化 硝酸镧浓度 硬度 耐磨性能 耐腐蚀性能
下载PDF
PTFE颗粒对齿轮钢锰系复合磷化膜性能的影响
5
作者 刘建军 王孝鹏 《兵器材料科学与工程》 CAS CSCD 北大核心 2021年第6期76-81,共6页
以齿轮钢作基体制备锰系复合磷化膜,研究磷化液中PTFE颗粒质量浓度对磷化膜的微观形貌、耐蚀性、耐磨性及PTFE颗粒质量分数的影响。结果表明:PTFE颗粒起物理填充作用,对磷化膜的晶粒形态、尺寸及结合状态无影响。随PTFE颗粒质量浓度从0.... 以齿轮钢作基体制备锰系复合磷化膜,研究磷化液中PTFE颗粒质量浓度对磷化膜的微观形貌、耐蚀性、耐磨性及PTFE颗粒质量分数的影响。结果表明:PTFE颗粒起物理填充作用,对磷化膜的晶粒形态、尺寸及结合状态无影响。随PTFE颗粒质量浓度从0.015 kg/L增至0.09 kg/L,锰系复合磷化膜中PTFE颗粒质量分数先升后降,耐蚀性和耐磨性均明显提高而后下降。当PTFE颗粒的质量浓度为0.06 kg/L时,复合磷化膜中PTFE颗粒质量分数最高,达9.24%,大量PTFE颗粒弥散分布在晶粒表面和晶粒间隙,可有效阻挡腐蚀介质侵蚀,在摩擦界面形成一层固体润滑膜,起较好减摩作用。该锰系复合磷化膜更适合作表面改性层,大幅度提高齿轮钢制件表面的耐蚀性和耐磨性。 展开更多
关键词 复合磷化 齿轮钢 PTFE颗粒 耐蚀性 耐磨性
下载PDF
SiO2颗粒分散液浓度对建筑结构钢锌系复合磷化膜耐蚀性的影响 被引量:5
6
作者 张翔 李秋艺 《电镀与精饰》 CAS 北大核心 2020年第12期10-14,共5页
通过硫酸铜点滴实验、静态浸泡实验以及电化学阻抗谱测试,以变色时间、电荷转移电阻、低频阻抗模值等作为指标,研究了SiO2颗粒分散液浓度对锌系复合磷化膜耐蚀性的影响。结果表明:SiO2颗粒分散液浓度对磷化膜的耐蚀性有较显著的影响,随... 通过硫酸铜点滴实验、静态浸泡实验以及电化学阻抗谱测试,以变色时间、电荷转移电阻、低频阻抗模值等作为指标,研究了SiO2颗粒分散液浓度对锌系复合磷化膜耐蚀性的影响。结果表明:SiO2颗粒分散液浓度对磷化膜的耐蚀性有较显著的影响,随着SiO2颗粒分散液浓度从10 mL/L增加到60 mL/L,磷化膜变色时间从116 s逐渐延长到170 s,电荷转移电阻从1.170 kΩ·cm2逐渐增大到4.580 kΩ·cm2,低频阻抗模值从0.635 kΩ·cm2逐渐增大到3.845 kΩ·cm2,说明磷化膜的耐蚀性有较大幅度提高。随着SiO2颗粒分散液浓度从60 mL/L继续增加到80 mL/L,磷化膜变色时间、电荷转移电阻和低频阻抗模值都变化不大,其耐蚀性未进一步提高。但SiO2颗粒分散液浓度超过80 mL/L后,磷化膜的耐蚀性明显变差。 展开更多
关键词 耐蚀性 复合磷化 建筑结构钢 SiO2颗粒分散液浓度
下载PDF
建筑结构钢表面锌系复合磷化膜的制备及耐蚀性研究 被引量:1
7
作者 李秋艺 《电镀与精饰》 CAS 北大核心 2021年第4期16-19,共4页
将纳米SiO2颗粒添加到磷化液中,在建筑结构钢表面制备出锌系复合磷化膜,并与纯锌系磷化膜进行了比对。结果表明:两种磷化膜都完全覆盖了基体,且都呈断层状形貌,锌系复合磷化膜的晶粒空隙被纳米SiO2颗粒填补,其含量约为7.54%。两种磷化... 将纳米SiO2颗粒添加到磷化液中,在建筑结构钢表面制备出锌系复合磷化膜,并与纯锌系磷化膜进行了比对。结果表明:两种磷化膜都完全覆盖了基体,且都呈断层状形貌,锌系复合磷化膜的晶粒空隙被纳米SiO2颗粒填补,其含量约为7.54%。两种磷化膜的耐蚀性都好于建筑结构钢,且锌系复合磷化膜的耐蚀性最好。纳米SiO2颗粒在一定程度上填补了晶粒空隙,有效阻碍了腐蚀介质通过晶粒空隙渗透和扩散,从而保证锌系复合磷化膜具有较好的耐蚀性,使建筑钢构件能更好的满足防腐蚀要求。 展开更多
关键词 耐蚀性 复合磷化 磷化 建筑结构钢
下载PDF
建筑用16Mn钢表面制备锌系复合磷化膜及其耐腐蚀与抗污染性能
8
作者 岳伟 王冰 刘颖春 《电镀与精饰》 CAS 北大核心 2023年第6期1-8,共8页
在建筑常用的16Mn钢表面制备锌系复合磷化膜,研究了磷化液中TiO_(2)颗粒分散液添加量对锌系复合磷化膜的结合力、表面形貌、TiO_(2)颗粒含量、厚度、耐腐蚀性能及表面抗污染性能的影响。结果表明:锌系复合磷化膜与16Mn钢基体结合紧密,... 在建筑常用的16Mn钢表面制备锌系复合磷化膜,研究了磷化液中TiO_(2)颗粒分散液添加量对锌系复合磷化膜的结合力、表面形貌、TiO_(2)颗粒含量、厚度、耐腐蚀性能及表面抗污染性能的影响。结果表明:锌系复合磷化膜与16Mn钢基体结合紧密,晶体间空隙被TiO_(2)颗粒不同程度填充。TiO_(2)颗粒分散液添加量为15 mL/L时制备的锌系复合磷化膜晶体表面附着很多TiO_(2)颗粒并呈良好分散状态,厚度约为9.2μm,静态接触角接近125.0°,其电荷转移电阻和低频阻抗值较16Mn钢分别提高了约2.7倍、2.4倍,对亚甲基蓝的降解率达到26.1%。原因归结为该锌系复合磷化膜表面具有较强的疏水作用,TiO_(2)颗粒填充晶体间空隙有效地抑制了电化学腐蚀且吸收紫外光能力增强,从而表现出良好的耐腐蚀与抗污染性能,能够为16Mn钢基体提供更好的保护作用,同时有效防止16Mn钢表面污染。 展开更多
关键词 复合磷化 16MN钢 TiO_(2)颗粒分散液添加量 耐腐蚀性能 抗污染性能
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部