锂-硒电池因其超高的体积能量密度和硒的高电导率而被认为是一种极具有发展前景的锂离子电池。然而,循环过程中电极严重的体积膨胀和多硒化物溶解,以及硒的低负载,阻碍了锂-硒电池应用的发展。解决这三个问题的一种行之有效的方法是将...锂-硒电池因其超高的体积能量密度和硒的高电导率而被认为是一种极具有发展前景的锂离子电池。然而,循环过程中电极严重的体积膨胀和多硒化物溶解,以及硒的低负载,阻碍了锂-硒电池应用的发展。解决这三个问题的一种行之有效的方法是将硒限制在具有丰富孔体积的碳基质中,并同时增强硒与碳的界面相互作用。通过将Se浸入酒石酸盐衍生的蜂窝状三维多孔炭中,合成出了一种具有Se―C键的蜂窝状三维多孔炭@硒(HPC@Se)的新型正极材料用于锂-Se电池。得到的蜂窝状三维多孔炭的孔体积可达1.794 cm^(3)g^(-1),能够均匀包封65%硒。此外,硒与碳之间的强化学键有利于稳定硒,从而进一步缓解其巨大的体积膨胀和多硒化物的溶解,还可促进循环过程中的电荷转移。该HPC@Se正极呈现出极好的循环性能和倍率性能。在0.2 C的电流密度下,经200次循环后,其比容量可保持在561 m Ahg^(-1)(为理论比容量的83%),每次循环的比容量衰减率仅为0.058%。此外,在5 C的高电流密度下,HPC@Se正极还可以达到472.8 m Ahg^(-1)的可观容量。展开更多
本文以南瓜为前驱体,通过“水热反应-KOH活化-碳化”制备工艺,制备得到多孔碳材料(429.85 m^2 g^-1)。再通过封闭空间高温烧结的方法,将单质Se熔解-扩散进入多孔C材料中,同时控制活性物质Se的尺寸和形貌,进一步提高Se负载率(51.8%),从...本文以南瓜为前驱体,通过“水热反应-KOH活化-碳化”制备工艺,制备得到多孔碳材料(429.85 m^2 g^-1)。再通过封闭空间高温烧结的方法,将单质Se熔解-扩散进入多孔C材料中,同时控制活性物质Se的尺寸和形貌,进一步提高Se负载率(51.8%),从而获得高性能锂-硒电池正极复合材料。得到C/Se复合材料首圈放电容量超过1000 mAh g^-1,并且100圈后仍能维持在400 mAh g^-1左右。本文制备的C/Se复合材料具有良好的孔径结构,并且电化学性能优异,同时原料来源广泛且廉价,制备工艺简单,为锂-硒电池产业化提供了更大的可能。展开更多
硒(Se)因其较高的体积比容量(3253 mAh cm^(-3))和电子电导率(1×10^(-5)S m^(-1))而成为新一代锂硒(Li-Se)电池储能材料。针对其反应过程中体积膨胀较大、容量衰减较快以及活性物质利用率低等问题,本研究通过在碳布(CC)上生长二维Z...硒(Se)因其较高的体积比容量(3253 mAh cm^(-3))和电子电导率(1×10^(-5)S m^(-1))而成为新一代锂硒(Li-Se)电池储能材料。针对其反应过程中体积膨胀较大、容量衰减较快以及活性物质利用率低等问题,本研究通过在碳布(CC)上生长二维Zn基金属有机框架(ZIF-L)并碳化,设计了一种ZIF-L衍生氮掺杂碳纳米片/硒自支撑复合材料(Se@NC/CC)用于锂硒电池研究。ZIF-L碳化形成的氮掺杂碳纳米片中丰富的微孔结构有效缓解了反应过程中的体积膨胀,掺杂N原子有利于吸附反应过程中的Li2Se,减少活性物质损失。特别地,Se@NC/CC电极中Se和C之间存在强的化学键作用,在一定程度上也可以减少活性物质损失,提高整体性能稳定性。电化学测试表明,在0.5C(1.0C=675 mAh g^(-1))电流密度下,Se@NC/CC电极的初始放电比容量为574 mAh g^(-1),展现出高初始放电比容量;电流密度为2.0C时,初始放电比容量为453.3 mAh g^(-1),循环500圈后仍然具有406.2 mAh g^(-1)的容量;同时也表现出了良好的倍率性能,与文献报道相比有较明显的优势。本研究设计的柔性自支撑硒电极为先进碱金属-硒电池的硒宿主材料设计提供了新的研究思路。展开更多
锂硒电池因其可观的体积比容量(3254 m A·h/cm3),已经引起了国内外研究学者们的广泛关注。本文在介绍锂硒电池硒/碳正极材料的基础上,指出了锂硒电池目前存在的主要问题,并提出了可能的解决方案,最后对未来锂硒电池的研究方向做出...锂硒电池因其可观的体积比容量(3254 m A·h/cm3),已经引起了国内外研究学者们的广泛关注。本文在介绍锂硒电池硒/碳正极材料的基础上,指出了锂硒电池目前存在的主要问题,并提出了可能的解决方案,最后对未来锂硒电池的研究方向做出了展望。展开更多
以甘氨酸作为碳源,KOH为活化剂,通过直接碳化/活化,制备了氮掺杂的多孔碳材料。继与硒高温融混,制得多孔碳/硒复合材料。X-射线衍射和氮气吸脱附测试结果表明多孔碳主要呈无定型结构,并具有以微孔为主的多孔结构;硒则均匀地分散于多孔...以甘氨酸作为碳源,KOH为活化剂,通过直接碳化/活化,制备了氮掺杂的多孔碳材料。继与硒高温融混,制得多孔碳/硒复合材料。X-射线衍射和氮气吸脱附测试结果表明多孔碳主要呈无定型结构,并具有以微孔为主的多孔结构;硒则均匀地分散于多孔碳的微孔中。以其作为正极的锂硒电池,在电流密度为0.2C时,其首次可逆放电比容量为378.5 m Ah·g-1,经过100次循环,放电比容量仍可以保持在321 m Ah·g-1,表现出了良好的电化学性能。展开更多
In order to find the appropriate material to load selenium for higher performance of rechargeable Li-Se batteries,the resorcinol-formaldehyde resins derived monodisperse carbon spheres(RFCS)/Se composites were fabrica...In order to find the appropriate material to load selenium for higher performance of rechargeable Li-Se batteries,the resorcinol-formaldehyde resins derived monodisperse carbon spheres(RFCS)/Se composites were fabricated by the melting-diffusion method.The RFCS were obtained from initial carbonization of resorcinol-formaldehyde resins and subsequent KOH activation.Three kinds of samples of the RFCS/Se composites with different mass ratios were characterized by XRD,Raman spectroscopy,SEM,BET and EDS tests,which demonstrate that the samples with diverse mass fractions of selenium have distinct interior structure.The most suitable RFCS/Se composite is found to be the RFCS/Se-50 composite,which delivers a high reversible capacity of 643.9 mA·h/g after 100 cycles at current density of 0.2C.展开更多
文摘锂-硒电池因其超高的体积能量密度和硒的高电导率而被认为是一种极具有发展前景的锂离子电池。然而,循环过程中电极严重的体积膨胀和多硒化物溶解,以及硒的低负载,阻碍了锂-硒电池应用的发展。解决这三个问题的一种行之有效的方法是将硒限制在具有丰富孔体积的碳基质中,并同时增强硒与碳的界面相互作用。通过将Se浸入酒石酸盐衍生的蜂窝状三维多孔炭中,合成出了一种具有Se―C键的蜂窝状三维多孔炭@硒(HPC@Se)的新型正极材料用于锂-Se电池。得到的蜂窝状三维多孔炭的孔体积可达1.794 cm^(3)g^(-1),能够均匀包封65%硒。此外,硒与碳之间的强化学键有利于稳定硒,从而进一步缓解其巨大的体积膨胀和多硒化物的溶解,还可促进循环过程中的电荷转移。该HPC@Se正极呈现出极好的循环性能和倍率性能。在0.2 C的电流密度下,经200次循环后,其比容量可保持在561 m Ahg^(-1)(为理论比容量的83%),每次循环的比容量衰减率仅为0.058%。此外,在5 C的高电流密度下,HPC@Se正极还可以达到472.8 m Ahg^(-1)的可观容量。
文摘本文以南瓜为前驱体,通过“水热反应-KOH活化-碳化”制备工艺,制备得到多孔碳材料(429.85 m^2 g^-1)。再通过封闭空间高温烧结的方法,将单质Se熔解-扩散进入多孔C材料中,同时控制活性物质Se的尺寸和形貌,进一步提高Se负载率(51.8%),从而获得高性能锂-硒电池正极复合材料。得到C/Se复合材料首圈放电容量超过1000 mAh g^-1,并且100圈后仍能维持在400 mAh g^-1左右。本文制备的C/Se复合材料具有良好的孔径结构,并且电化学性能优异,同时原料来源广泛且廉价,制备工艺简单,为锂-硒电池产业化提供了更大的可能。
文摘硒(Se)因其较高的体积比容量(3253 mAh cm^(-3))和电子电导率(1×10^(-5)S m^(-1))而成为新一代锂硒(Li-Se)电池储能材料。针对其反应过程中体积膨胀较大、容量衰减较快以及活性物质利用率低等问题,本研究通过在碳布(CC)上生长二维Zn基金属有机框架(ZIF-L)并碳化,设计了一种ZIF-L衍生氮掺杂碳纳米片/硒自支撑复合材料(Se@NC/CC)用于锂硒电池研究。ZIF-L碳化形成的氮掺杂碳纳米片中丰富的微孔结构有效缓解了反应过程中的体积膨胀,掺杂N原子有利于吸附反应过程中的Li2Se,减少活性物质损失。特别地,Se@NC/CC电极中Se和C之间存在强的化学键作用,在一定程度上也可以减少活性物质损失,提高整体性能稳定性。电化学测试表明,在0.5C(1.0C=675 mAh g^(-1))电流密度下,Se@NC/CC电极的初始放电比容量为574 mAh g^(-1),展现出高初始放电比容量;电流密度为2.0C时,初始放电比容量为453.3 mAh g^(-1),循环500圈后仍然具有406.2 mAh g^(-1)的容量;同时也表现出了良好的倍率性能,与文献报道相比有较明显的优势。本研究设计的柔性自支撑硒电极为先进碱金属-硒电池的硒宿主材料设计提供了新的研究思路。
文摘以甘氨酸作为碳源,KOH为活化剂,通过直接碳化/活化,制备了氮掺杂的多孔碳材料。继与硒高温融混,制得多孔碳/硒复合材料。X-射线衍射和氮气吸脱附测试结果表明多孔碳主要呈无定型结构,并具有以微孔为主的多孔结构;硒则均匀地分散于多孔碳的微孔中。以其作为正极的锂硒电池,在电流密度为0.2C时,其首次可逆放电比容量为378.5 m Ah·g-1,经过100次循环,放电比容量仍可以保持在321 m Ah·g-1,表现出了良好的电化学性能。
基金Project(21471162)supported by the National Natural Science Foundation of ChinaProject supported by the Recruitment Program of Global Youth Experts,ChinaProject(20130162120031)supported by Research Fund for the Doctoral Program of Higher Education of China
文摘In order to find the appropriate material to load selenium for higher performance of rechargeable Li-Se batteries,the resorcinol-formaldehyde resins derived monodisperse carbon spheres(RFCS)/Se composites were fabricated by the melting-diffusion method.The RFCS were obtained from initial carbonization of resorcinol-formaldehyde resins and subsequent KOH activation.Three kinds of samples of the RFCS/Se composites with different mass ratios were characterized by XRD,Raman spectroscopy,SEM,BET and EDS tests,which demonstrate that the samples with diverse mass fractions of selenium have distinct interior structure.The most suitable RFCS/Se composite is found to be the RFCS/Se-50 composite,which delivers a high reversible capacity of 643.9 mA·h/g after 100 cycles at current density of 0.2C.