期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进鸟群算法优化最小二乘支持向量机的锂离子电池寿命预测方法研究
被引量:
2
1
作者
王雪莹
赵全明
《电气应用》
2020年第5期12-16,共5页
随着锂离子电池的广泛应用,其寿命预测与健康管理已成为当今的热点问题。锂电池寿命预测对于电池管理系统的稳定运行有着重要意义。采用最小二乘支持向量机(LSSVM)模型对锂离子电池剩余寿命进行预测,并采用鸟群优化算法(BSA)对LSSVM参...
随着锂离子电池的广泛应用,其寿命预测与健康管理已成为当今的热点问题。锂电池寿命预测对于电池管理系统的稳定运行有着重要意义。采用最小二乘支持向量机(LSSVM)模型对锂离子电池剩余寿命进行预测,并采用鸟群优化算法(BSA)对LSSVM参数进行寻优。为提高BSA算法的全局搜索能力,对BSA算法进行改进,并提出改进鸟群算法(IBSA)。最后采用IBSA算法优化LSSVM模型,建立了IBSA-LSSVM预测模型并对锂离子电池寿命进行预测。测试结果表明,IBSA-LSSVM模型有良好的预测效果和预测稳定性。
展开更多
关键词
可持续
锂离子
电池
鸟群算法
最小二乘支持向量机
锂离子
电池
寿命
预测
下载PDF
职称材料
题名
基于改进鸟群算法优化最小二乘支持向量机的锂离子电池寿命预测方法研究
被引量:
2
1
作者
王雪莹
赵全明
机构
河北工业大学学院
出处
《电气应用》
2020年第5期12-16,共5页
文摘
随着锂离子电池的广泛应用,其寿命预测与健康管理已成为当今的热点问题。锂电池寿命预测对于电池管理系统的稳定运行有着重要意义。采用最小二乘支持向量机(LSSVM)模型对锂离子电池剩余寿命进行预测,并采用鸟群优化算法(BSA)对LSSVM参数进行寻优。为提高BSA算法的全局搜索能力,对BSA算法进行改进,并提出改进鸟群算法(IBSA)。最后采用IBSA算法优化LSSVM模型,建立了IBSA-LSSVM预测模型并对锂离子电池寿命进行预测。测试结果表明,IBSA-LSSVM模型有良好的预测效果和预测稳定性。
关键词
可持续
锂离子
电池
鸟群算法
最小二乘支持向量机
锂离子
电池
寿命
预测
Keywords
lithium-ion battery
bird swarm optimization algorithm
least squares support vector machine
life prediction of lithium ion battery
分类号
TM912 [电气工程—电力电子与电力传动]
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进鸟群算法优化最小二乘支持向量机的锂离子电池寿命预测方法研究
王雪莹
赵全明
《电气应用》
2020
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部