为发展下一代高性能电池,具有超高比容量(3860 mAh g^(-1))和低氧化还原电位(相对于标准氢电极(SHE)-3.04 V)的金属锂负极已成为广泛研究的热点。然而,不可控的枝晶生长、较低的库伦效率和巨大的体积形变等问题严重阻碍了金属锂负极的...为发展下一代高性能电池,具有超高比容量(3860 mAh g^(-1))和低氧化还原电位(相对于标准氢电极(SHE)-3.04 V)的金属锂负极已成为广泛研究的热点。然而,不可控的枝晶生长、较低的库伦效率和巨大的体积形变等问题严重阻碍了金属锂负极的商业化应用进程。炭材料由于具有高电子迁移率、稳定的电化学性能、可调节的物理化学性质以及质量轻等特点,被认为是克服这些问题非常有前景的一种金属锂宿主/载体材料。基于此,作者讨论了炭宿主/载体调控和设计方面取得的最新进展,并基于炭材料单元维度变化,总结和讨论碳宿主/载体的锂亲和性改性策略及炭材料单元维度变化和锂亲和性调控与电化学性能的关系。最后,面向实用化可充电金属锂电池,提出高性能炭宿主/载体合理构建的发展方向和前景。展开更多
基金supported by the Beijing Municipal Natural Science Foundation (Z200011)National Natural Science Foundation of China (22108151, 22109084, 22209092, 22061132002)+3 种基金National Key Research and Development Program (2021YFB2500300)S&T Program of Hebei (22344402D)Tsinghua-Jiangyin Innovation Special Fund (TJISF)the Institute of Strategic Research, Huawei Technologies Co., Ltd.
文摘为发展下一代高性能电池,具有超高比容量(3860 mAh g^(-1))和低氧化还原电位(相对于标准氢电极(SHE)-3.04 V)的金属锂负极已成为广泛研究的热点。然而,不可控的枝晶生长、较低的库伦效率和巨大的体积形变等问题严重阻碍了金属锂负极的商业化应用进程。炭材料由于具有高电子迁移率、稳定的电化学性能、可调节的物理化学性质以及质量轻等特点,被认为是克服这些问题非常有前景的一种金属锂宿主/载体材料。基于此,作者讨论了炭宿主/载体调控和设计方面取得的最新进展,并基于炭材料单元维度变化,总结和讨论碳宿主/载体的锂亲和性改性策略及炭材料单元维度变化和锂亲和性调控与电化学性能的关系。最后,面向实用化可充电金属锂电池,提出高性能炭宿主/载体合理构建的发展方向和前景。