A number of finite element simulations were performed to analyze the in-plane crushing behaviour of aluminium honeycombs and the results are presented and discussed. The simulations include both X1 and X2 cases. All t...A number of finite element simulations were performed to analyze the in-plane crushing behaviour of aluminium honeycombs and the results are presented and discussed. The simulations include both X1 and X2 cases. All the analyses are quasi-static, and can be divided into three groups, which are designed to investigate the effects of cell size, foil thickness and yield stress of the foil material, respectively, on the structural response of honeycombs. The result indicates that these factors can significantly affect the plateau stresses of honeycomb cellular structures in both directions, and the plateau stresses in X2 direction are slightly smaller than those in X1 direction. The simulation results were further compared with published theoretical predictions and show higher values. The difference was then analyzed and a new expression for the plateau stress of honeycombs was suggested.展开更多
文摘A number of finite element simulations were performed to analyze the in-plane crushing behaviour of aluminium honeycombs and the results are presented and discussed. The simulations include both X1 and X2 cases. All the analyses are quasi-static, and can be divided into three groups, which are designed to investigate the effects of cell size, foil thickness and yield stress of the foil material, respectively, on the structural response of honeycombs. The result indicates that these factors can significantly affect the plateau stresses of honeycomb cellular structures in both directions, and the plateau stresses in X2 direction are slightly smaller than those in X1 direction. The simulation results were further compared with published theoretical predictions and show higher values. The difference was then analyzed and a new expression for the plateau stress of honeycombs was suggested.