Combustion synthesis involving metallothermic reduction of Fe2O3 and TiO2 was conducted in the mode of self-propagating high-temperature synthesis(SHS)to fabricate FeAl-based composites with dual ceramic phases,TiB2/A...Combustion synthesis involving metallothermic reduction of Fe2O3 and TiO2 was conducted in the mode of self-propagating high-temperature synthesis(SHS)to fabricate FeAl-based composites with dual ceramic phases,TiB2/Al2O3 and TiC/Al2O3.The reactant mixture included thermite reagents of 0.6Fe2O3+0.6TiO2+2Al,and elemental Fe,Al,boron,and carbon powders.The formation of xFeAl−0.6TiB2−Al2O3 composites with x=2.0−3.6 and yFeAl−0.6TiC−Al2O3 composites with y=1.8−2.75 was studied.The increase of FeAl causes a decrease in the reaction exothermicity,thus resulting in the existence of flammability limits of x=3.6 and y=2.75 for the SHS reactions.Based on combustion wave kinetics,the activation energies of Ea=97.1 and 101.1 kJ/mol are deduced for the metallothermic SHS reactions.XRD analyses confirm in situ formation of FeAl/TiB2/Al2O3 and FeAl/TiC/Al2O3 composites.SEM micrographs exhibit that FeAl is formed with a dense polycrystalline structure,and the ceramic phases,TiB2,TiC,and Al2O3,are micro-sized discrete particles.The synthesized FeAl−TiB2−Al2O3 and FeAl−TiC−Al2O3 composites exhibit the hardness ranging from 12.8 to 16.6 GPa and fracture toughness from 7.93 to 9.84 MPa·m1/2.展开更多
文摘Combustion synthesis involving metallothermic reduction of Fe2O3 and TiO2 was conducted in the mode of self-propagating high-temperature synthesis(SHS)to fabricate FeAl-based composites with dual ceramic phases,TiB2/Al2O3 and TiC/Al2O3.The reactant mixture included thermite reagents of 0.6Fe2O3+0.6TiO2+2Al,and elemental Fe,Al,boron,and carbon powders.The formation of xFeAl−0.6TiB2−Al2O3 composites with x=2.0−3.6 and yFeAl−0.6TiC−Al2O3 composites with y=1.8−2.75 was studied.The increase of FeAl causes a decrease in the reaction exothermicity,thus resulting in the existence of flammability limits of x=3.6 and y=2.75 for the SHS reactions.Based on combustion wave kinetics,the activation energies of Ea=97.1 and 101.1 kJ/mol are deduced for the metallothermic SHS reactions.XRD analyses confirm in situ formation of FeAl/TiB2/Al2O3 and FeAl/TiC/Al2O3 composites.SEM micrographs exhibit that FeAl is formed with a dense polycrystalline structure,and the ceramic phases,TiB2,TiC,and Al2O3,are micro-sized discrete particles.The synthesized FeAl−TiB2−Al2O3 and FeAl−TiC−Al2O3 composites exhibit the hardness ranging from 12.8 to 16.6 GPa and fracture toughness from 7.93 to 9.84 MPa·m1/2.