The oxygen storage material (OSM) Ce0.35Zr0.55Y0.1O1.95 was prepared by co-precipitation routine and studied by means of TEM, XRD, XPS, BET, H2-TPR and oxygen storage capacity (OSC) measurements. The results indicated...The oxygen storage material (OSM) Ce0.35Zr0.55Y0.1O1.95 was prepared by co-precipitation routine and studied by means of TEM, XRD, XPS, BET, H2-TPR and oxygen storage capacity (OSC) measurements. The results indicated that this material possessed plenty of Ce3+ and lattice oxygen vacancy (percentage of Ce3+ was 59.6%) and high cerium atom utilization ratio (80.04%). The porous material was with an average BET surface area of 97 m2·g-1 and pore volume of 0.26 mL·g-1. After aged at 1 000 ℃ in air for 5 h, the sample still possessed plenty of Ce3+ and lattice oxygen vacancy (percentage of Ce3+ was 57.1%), and showed high cerium atom utilization ratio (78.25%), and high thermal stability.展开更多
A series of materials Ce0.3+xZr0.6-xY0.1O1.95 were prepared by co-precipitation routine and the property of these materials was studied by means of oxygen storage capacity, temperature programming reduction, X-ray dif...A series of materials Ce0.3+xZr0.6-xY0.1O1.95 were prepared by co-precipitation routine and the property of these materials was studied by means of oxygen storage capacity, temperature programming reduction, X-ray diffraction, transmission electronic microscope, and X-ray photoelectron spectroscopy. The results indicate that the materials with a low Ce/Zr molar ratio possess higher cerium atom utilization ratio, reducibility and thermal stability than the materials with a high Ce/Zr ratio, and Ce0.35Zr0.55Y0.1O1.95 possesses the best properties.展开更多
文摘The oxygen storage material (OSM) Ce0.35Zr0.55Y0.1O1.95 was prepared by co-precipitation routine and studied by means of TEM, XRD, XPS, BET, H2-TPR and oxygen storage capacity (OSC) measurements. The results indicated that this material possessed plenty of Ce3+ and lattice oxygen vacancy (percentage of Ce3+ was 59.6%) and high cerium atom utilization ratio (80.04%). The porous material was with an average BET surface area of 97 m2·g-1 and pore volume of 0.26 mL·g-1. After aged at 1 000 ℃ in air for 5 h, the sample still possessed plenty of Ce3+ and lattice oxygen vacancy (percentage of Ce3+ was 57.1%), and showed high cerium atom utilization ratio (78.25%), and high thermal stability.
文摘A series of materials Ce0.3+xZr0.6-xY0.1O1.95 were prepared by co-precipitation routine and the property of these materials was studied by means of oxygen storage capacity, temperature programming reduction, X-ray diffraction, transmission electronic microscope, and X-ray photoelectron spectroscopy. The results indicate that the materials with a low Ce/Zr molar ratio possess higher cerium atom utilization ratio, reducibility and thermal stability than the materials with a high Ce/Zr ratio, and Ce0.35Zr0.55Y0.1O1.95 possesses the best properties.