The iron doping titanium dioxide was prepared by sol-gel,step precipitation,co-precipitation and immersion methods,respectively.The photocatalytic activities of these prepared samples were evaluated in X-3B dispersion...The iron doping titanium dioxide was prepared by sol-gel,step precipitation,co-precipitation and immersion methods,respectively.The photocatalytic activities of these prepared samples were evaluated in X-3B dispersion irradiated under UV.The experimental results showed that the immersion method,especially using the nano TiO2 as immersion matrix,greatly enhanced the photocatalytic activity.One fold enhancement in photocatalytic activity was observed in the case of the sample prepared by immersion doping method.This may be attributed to the nano-size effect,the irreversible hole trapper in non-saturated bonding field of Fe3+ and larger lattice strain.展开更多
采用AG MP-1阴离子交换树脂,分别以7 mol/L HC l、2 mol/L HC l、0.5 mol/L HNO3作为淋洗剂,可有效分离Cu、Fe、Zn。介绍了方法的基本原理、化学分离过程及混合标准溶液与地质标样的分离结果。结果表明,Cu、Fe、Zn回收率均接近100%,标...采用AG MP-1阴离子交换树脂,分别以7 mol/L HC l、2 mol/L HC l、0.5 mol/L HNO3作为淋洗剂,可有效分离Cu、Fe、Zn。介绍了方法的基本原理、化学分离过程及混合标准溶液与地质标样的分离结果。结果表明,Cu、Fe、Zn回收率均接近100%,标准溶液在离子交换分离前后同位素组成一致,可以满足多接收器等离子体质谱对Cu、Fe、Zn同位素高精度分析的要求。展开更多
文摘The iron doping titanium dioxide was prepared by sol-gel,step precipitation,co-precipitation and immersion methods,respectively.The photocatalytic activities of these prepared samples were evaluated in X-3B dispersion irradiated under UV.The experimental results showed that the immersion method,especially using the nano TiO2 as immersion matrix,greatly enhanced the photocatalytic activity.One fold enhancement in photocatalytic activity was observed in the case of the sample prepared by immersion doping method.This may be attributed to the nano-size effect,the irreversible hole trapper in non-saturated bonding field of Fe3+ and larger lattice strain.
文摘采用AG MP-1阴离子交换树脂,分别以7 mol/L HC l、2 mol/L HC l、0.5 mol/L HNO3作为淋洗剂,可有效分离Cu、Fe、Zn。介绍了方法的基本原理、化学分离过程及混合标准溶液与地质标样的分离结果。结果表明,Cu、Fe、Zn回收率均接近100%,标准溶液在离子交换分离前后同位素组成一致,可以满足多接收器等离子体质谱对Cu、Fe、Zn同位素高精度分析的要求。