We present a comparison of Mo, V and Nb oxides as shell materials atop haematite cores used for selective methanol oxidation. While Mo and V both yield high selectivity to formaldehyde, Nb does not. Very different rea...We present a comparison of Mo, V and Nb oxides as shell materials atop haematite cores used for selective methanol oxidation. While Mo and V both yield high selectivity to formaldehyde, Nb does not. Very different reactivity patterns are seen for Nb, which mainly shows dehydrogenation (to CO) and dehydration (to DME), indicating the lack of a complete shell, while Raman spectroscopy shows that the Mo and V formation process is not followed by NbOx. We suggest this is due to the large differences in mobility within the solid materials during formation, NbOx requiring significantly higher (and deleterious) calcination temperatures to allow sufficient mobility for shell completion.展开更多
Fe2(MoO4)3 ultrafine particle catalyst has been prepared successfully by the sol-gel process at lower temperature. The influences of preparation conditions and thermal treatment conditions on the morphology and struct...Fe2(MoO4)3 ultrafine particle catalyst has been prepared successfully by the sol-gel process at lower temperature. The influences of preparation conditions and thermal treatment conditions on the morphology and structure of the ultrafine particle catalyst has been studied by using TEM, DTA-TG, FT-IR, XRD and BET surface area measurement methods. It is shown that the BET surface area of Fe2(MoO4)3 ultrafine particle prepared by sol-gel method is much larger than that of Fe2(MoO4)3 prepared by coprecipitation method. For the preparation of the welldistribuated Fe2(MoO4)3 ultrafine particles with the size in the range of 40-80nm, the optimumconditions are : treatment temperature <673K, L/M (Citric acid/Metallic ions)=0.3 and pH<1 .0.展开更多
基金EPSRC for support via the UK Catalysis Hub(EP/K014854/1,EP/K014714/1)EPSRC and Diamond Light Source for funding the studentship to PH
文摘We present a comparison of Mo, V and Nb oxides as shell materials atop haematite cores used for selective methanol oxidation. While Mo and V both yield high selectivity to formaldehyde, Nb does not. Very different reactivity patterns are seen for Nb, which mainly shows dehydrogenation (to CO) and dehydration (to DME), indicating the lack of a complete shell, while Raman spectroscopy shows that the Mo and V formation process is not followed by NbOx. We suggest this is due to the large differences in mobility within the solid materials during formation, NbOx requiring significantly higher (and deleterious) calcination temperatures to allow sufficient mobility for shell completion.
文摘Fe2(MoO4)3 ultrafine particle catalyst has been prepared successfully by the sol-gel process at lower temperature. The influences of preparation conditions and thermal treatment conditions on the morphology and structure of the ultrafine particle catalyst has been studied by using TEM, DTA-TG, FT-IR, XRD and BET surface area measurement methods. It is shown that the BET surface area of Fe2(MoO4)3 ultrafine particle prepared by sol-gel method is much larger than that of Fe2(MoO4)3 prepared by coprecipitation method. For the preparation of the welldistribuated Fe2(MoO4)3 ultrafine particles with the size in the range of 40-80nm, the optimumconditions are : treatment temperature <673K, L/M (Citric acid/Metallic ions)=0.3 and pH<1 .0.