Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interf...Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of NaK alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the intimate contact of electrode-electrolyte interface.Additionally,the filling of SiO_(2)nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 h.The full cell coupled with Na_(3)V_(3)(PO_(4))_(2)cathodes had an initial discharge capacity of 106.8 mAh·g^(-1)with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1)even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode.展开更多
研究了钠/汞固体电解质作电池制备高纯钠汞齐的电化学合成方法及其反应机理。在电池中,以钠β氧化铝管作固体电解质隔膜,钠为负极,汞作正极,通过电池放电在汞电极中合成钠汞齐。合成组分可由电池的通电量(库仑滴定法)或平衡电动势的测...研究了钠/汞固体电解质作电池制备高纯钠汞齐的电化学合成方法及其反应机理。在电池中,以钠β氧化铝管作固体电解质隔膜,钠为负极,汞作正极,通过电池放电在汞电极中合成钠汞齐。合成组分可由电池的通电量(库仑滴定法)或平衡电动势的测量进行精确控制和标定。钠汞齐 Na_xHg_(1-x)中的组分 x 的可控精确度为 x±0.001x。纯度>99.9%。展开更多
基金National Natural Science Foundation of China(52073253)。
文摘Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of NaK alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the intimate contact of electrode-electrolyte interface.Additionally,the filling of SiO_(2)nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 h.The full cell coupled with Na_(3)V_(3)(PO_(4))_(2)cathodes had an initial discharge capacity of 106.8 mAh·g^(-1)with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1)even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode.
文摘研究了钠/汞固体电解质作电池制备高纯钠汞齐的电化学合成方法及其反应机理。在电池中,以钠β氧化铝管作固体电解质隔膜,钠为负极,汞作正极,通过电池放电在汞电极中合成钠汞齐。合成组分可由电池的通电量(库仑滴定法)或平衡电动势的测量进行精确控制和标定。钠汞齐 Na_xHg_(1-x)中的组分 x 的可控精确度为 x±0.001x。纯度>99.9%。