目前,锂离子电池的安全问题越来越受到各界关注。为此,采用C80微量量热仪对镍钴铝酸锂/钛酸锂电池的主要电池材料体系进行热稳定性测试,采用ARC进行镍钴铝酸锂/钛酸锂电池的热失控试验,两相结合分析镍钴铝酸锂/钛酸锂电池体系的热稳定...目前,锂离子电池的安全问题越来越受到各界关注。为此,采用C80微量量热仪对镍钴铝酸锂/钛酸锂电池的主要电池材料体系进行热稳定性测试,采用ARC进行镍钴铝酸锂/钛酸锂电池的热失控试验,两相结合分析镍钴铝酸锂/钛酸锂电池体系的热稳定性。研究发现,电池热失控的温度(171℃)与隔膜的熔断温度(168.62℃)相近,LTO/电解液体系的活化能(75.43 k J/mol)远低于NCA/电解液体系(246.97 k J/mol),但NCA/电解液体系的发热量(908.42 J/g)却远高于LTO/电解液体系(284.63 J/g)。由此表明,镍钴铝酸锂/钛酸锂电池的热失控过程为:隔膜熔断导致正负极短路,然后负极材料与电解液反应积累热量,进而导致正极材料与电解液反应大量放热。整个过程从引发至热失控达到最高温度用时仅45 s。展开更多
Flexible lithium ion batteries (LIBs) have recently attracted increasing attention as they show unique promising advantages, such as flexibility, shape diversity, and light weight. Similar to conventional LIBs, flex...Flexible lithium ion batteries (LIBs) have recently attracted increasing attention as they show unique promising advantages, such as flexibility, shape diversity, and light weight. Similar to conventional LIBs, flexible LIBs with long cycle life and high-rate performance are very important for applications of high performance flexible electronics. Herein, we report a three-dimensional (3D) web-like binderfree Li4Ti5O12 (LTO) anode assembled from numerous 1D nanowires exhibiting excellent cycling performance with high capacities of 153 and 115 mA·h·g^-1 after 5,000 cycles at 2 C and 20 C, respectively, and excellent rate property with a capacity of 103 mA·h·g^-1 even at a very high current rate of 80 C. Surprisingly, a flexible full battery assembled from the web-like LTO nanostructure and LiMn2O4 (LMO) nanorods exhibited a high capacity of 125 mA·h·g^-1 at high current rate of 20 C, and showed excellent flexibility with little performance degradation even in seriously bent states.展开更多
Large specific surface area is critical for Li4Ti5O12 to achieve good rate capacity and cycling stability, since it can increase the contact area between electrolyte/ electrode and shorten the transport paths for elec...Large specific surface area is critical for Li4Ti5O12 to achieve good rate capacity and cycling stability, since it can increase the contact area between electrolyte/ electrode and shorten the transport paths for electrons and lithium ions. In this study, hierarchical hollow Li4Ti5O12 urchin-like microspheres with ultra-high specific surface area of over 140 m2·g^-1 and diameter more than 500 nm have been successfully synthesized by combining the versatile sol-gel process and a hydrothermal reaction, and exhibit excellent electrochemical performance with a high specific capacity of 120 mA-h.g-1 at 20 C and long cycling stability of 〈 2% decay after 100 cycles. Ex situ electron energy loss spectroscopy (EELS) analysis of Li4Ti5O12 microspheres at different charge-discharge stages indicates that only a fraction of the TP* ions are reduced to Ti3+ and a phase transformation occurs whereby the spinel phase Li4TisO12 is converted into the rock-salt phase Li7Ti5O12. Even after 100 cycles, the oxidation-reduction reaction between Ti3+ and Ti4+ can be carried out much more effectively on the surface of Li4Ti5O12 nanosheets than on commercially available Li4Ti5O12 particles. All the results suggest that these Li4Ti5O12 microspheres may be attractive candidate anode materials for lithium ion batteries.展开更多
The morphology and electronic structure of a Li4Ti5012 anode are known to determine its electrical and electrochemical properties in lithium rechargeable batteries. Ag-Li4Ti5012 nanofibers have been rationally designe...The morphology and electronic structure of a Li4Ti5012 anode are known to determine its electrical and electrochemical properties in lithium rechargeable batteries. Ag-Li4Ti5012 nanofibers have been rationally designed and synthesized by an electrospinning technique to meet the requirements of one-dimensional (1D) morphology and superior electrical conductivity. Herein, we have found that the 1D Ag-Li4Ti5012 nanofibers show enhanced specific capacity, rate capability, and cycling stability compared to bare Li4Ti5012 nanofibers, due to the Ag nanoparticles (〈5 nm), which are mainly distributed at interfaces between Li4Ti5O12 primary particles. This structural morphology gives rise to 20% higher rate capability than bare Li4Ti5O12 nanofibers by facilitating the charge transfer kinetics. Our findings provide an effective way to improve the electrochemical performance of Li4Ti5O12 anodes for lithium rechargeable batteries.展开更多
文摘目前,锂离子电池的安全问题越来越受到各界关注。为此,采用C80微量量热仪对镍钴铝酸锂/钛酸锂电池的主要电池材料体系进行热稳定性测试,采用ARC进行镍钴铝酸锂/钛酸锂电池的热失控试验,两相结合分析镍钴铝酸锂/钛酸锂电池体系的热稳定性。研究发现,电池热失控的温度(171℃)与隔膜的熔断温度(168.62℃)相近,LTO/电解液体系的活化能(75.43 k J/mol)远低于NCA/电解液体系(246.97 k J/mol),但NCA/电解液体系的发热量(908.42 J/g)却远高于LTO/电解液体系(284.63 J/g)。由此表明,镍钴铝酸锂/钛酸锂电池的热失控过程为:隔膜熔断导致正负极短路,然后负极材料与电解液反应积累热量,进而导致正极材料与电解液反应大量放热。整个过程从引发至热失控达到最高温度用时仅45 s。
文摘Flexible lithium ion batteries (LIBs) have recently attracted increasing attention as they show unique promising advantages, such as flexibility, shape diversity, and light weight. Similar to conventional LIBs, flexible LIBs with long cycle life and high-rate performance are very important for applications of high performance flexible electronics. Herein, we report a three-dimensional (3D) web-like binderfree Li4Ti5O12 (LTO) anode assembled from numerous 1D nanowires exhibiting excellent cycling performance with high capacities of 153 and 115 mA·h·g^-1 after 5,000 cycles at 2 C and 20 C, respectively, and excellent rate property with a capacity of 103 mA·h·g^-1 even at a very high current rate of 80 C. Surprisingly, a flexible full battery assembled from the web-like LTO nanostructure and LiMn2O4 (LMO) nanorods exhibited a high capacity of 125 mA·h·g^-1 at high current rate of 20 C, and showed excellent flexibility with little performance degradation even in seriously bent states.
文摘Large specific surface area is critical for Li4Ti5O12 to achieve good rate capacity and cycling stability, since it can increase the contact area between electrolyte/ electrode and shorten the transport paths for electrons and lithium ions. In this study, hierarchical hollow Li4Ti5O12 urchin-like microspheres with ultra-high specific surface area of over 140 m2·g^-1 and diameter more than 500 nm have been successfully synthesized by combining the versatile sol-gel process and a hydrothermal reaction, and exhibit excellent electrochemical performance with a high specific capacity of 120 mA-h.g-1 at 20 C and long cycling stability of 〈 2% decay after 100 cycles. Ex situ electron energy loss spectroscopy (EELS) analysis of Li4Ti5O12 microspheres at different charge-discharge stages indicates that only a fraction of the TP* ions are reduced to Ti3+ and a phase transformation occurs whereby the spinel phase Li4TisO12 is converted into the rock-salt phase Li7Ti5O12. Even after 100 cycles, the oxidation-reduction reaction between Ti3+ and Ti4+ can be carried out much more effectively on the surface of Li4Ti5O12 nanosheets than on commercially available Li4Ti5O12 particles. All the results suggest that these Li4Ti5O12 microspheres may be attractive candidate anode materials for lithium ion batteries.
文摘The morphology and electronic structure of a Li4Ti5012 anode are known to determine its electrical and electrochemical properties in lithium rechargeable batteries. Ag-Li4Ti5012 nanofibers have been rationally designed and synthesized by an electrospinning technique to meet the requirements of one-dimensional (1D) morphology and superior electrical conductivity. Herein, we have found that the 1D Ag-Li4Ti5012 nanofibers show enhanced specific capacity, rate capability, and cycling stability compared to bare Li4Ti5012 nanofibers, due to the Ag nanoparticles (〈5 nm), which are mainly distributed at interfaces between Li4Ti5O12 primary particles. This structural morphology gives rise to 20% higher rate capability than bare Li4Ti5O12 nanofibers by facilitating the charge transfer kinetics. Our findings provide an effective way to improve the electrochemical performance of Li4Ti5O12 anodes for lithium rechargeable batteries.