铁水钒含量作为冶炼钒钛磁铁矿高炉的重要经济指标,对其进行准确预测将对高炉后续提钒增效具有重要生产意义。利用小波-TCN组合时序模型对具有非线性、波动大等特点的高炉铁水钒含量进行预测。首先利用小波变换将原时间序列数据分解成...铁水钒含量作为冶炼钒钛磁铁矿高炉的重要经济指标,对其进行准确预测将对高炉后续提钒增效具有重要生产意义。利用小波-TCN组合时序模型对具有非线性、波动大等特点的高炉铁水钒含量进行预测。首先利用小波变换将原时间序列数据分解成多个噪声段和单个趋势段,然后选用TCN模型对小波变换后的噪声段和趋势段分别进行预测,最后将结果重构得到最终的预测结果。对于选取小波变换层数较复杂的问题,利用赫斯特系数能够表征数据可预测性的特点,提出小波变换后的平均赫斯特系数()用于降低模型建立过程中小波变换层数选取的复杂度,从而改进小波-TCN组合时序模型。结果表明,改进后的预测模型对单一变量预测高效且准确,相对非改进模型运算时间减少150%左右。对于赫斯特系数大于0.5的预测数据,利用改进小波-TCN组合时序模型对铁水钒含量进行预测,预测结果数据的R2达到0.967,均优于LSTM、LSTM with Attention和TCN单一预测模型的预测效果;对铁水硅、硫含量和铁水温度数据进行单变量预测,其R2分别为0.953、0.942和0.933。该预测模型可高效准确地对高炉铁水质量单变量进行预测,并可为高炉冶炼过程中所产生的其他波动较大数据的单变量准确、高效预测提供参考方案。基于预测模型进行预测系统功能应用开发,能使操高炉操作人员直观了解高炉出铁质量各参数状况,对高炉出铁质量数据进行提前掌握,促进高炉稳定顺行。展开更多
文摘铁水钒含量作为冶炼钒钛磁铁矿高炉的重要经济指标,对其进行准确预测将对高炉后续提钒增效具有重要生产意义。利用小波-TCN组合时序模型对具有非线性、波动大等特点的高炉铁水钒含量进行预测。首先利用小波变换将原时间序列数据分解成多个噪声段和单个趋势段,然后选用TCN模型对小波变换后的噪声段和趋势段分别进行预测,最后将结果重构得到最终的预测结果。对于选取小波变换层数较复杂的问题,利用赫斯特系数能够表征数据可预测性的特点,提出小波变换后的平均赫斯特系数()用于降低模型建立过程中小波变换层数选取的复杂度,从而改进小波-TCN组合时序模型。结果表明,改进后的预测模型对单一变量预测高效且准确,相对非改进模型运算时间减少150%左右。对于赫斯特系数大于0.5的预测数据,利用改进小波-TCN组合时序模型对铁水钒含量进行预测,预测结果数据的R2达到0.967,均优于LSTM、LSTM with Attention和TCN单一预测模型的预测效果;对铁水硅、硫含量和铁水温度数据进行单变量预测,其R2分别为0.953、0.942和0.933。该预测模型可高效准确地对高炉铁水质量单变量进行预测,并可为高炉冶炼过程中所产生的其他波动较大数据的单变量准确、高效预测提供参考方案。基于预测模型进行预测系统功能应用开发,能使操高炉操作人员直观了解高炉出铁质量各参数状况,对高炉出铁质量数据进行提前掌握,促进高炉稳定顺行。