期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于循环退火技术的InGaAs/AlGaAs量子阱混杂 被引量:4
1
作者 林盛杰 李建军 +2 位作者 何林杰 邓军 韩军 《光电子.激光》 EI CAS CSCD 北大核心 2014年第8期1471-1475,共5页
为了解决由于激光器腔面处的光吸收引起的腔面光学灾变损伤(COD),采用无杂质空位扩散(IFVD)法,研究了由SiO2电介质层诱导的InGaAs/AlGaAs量子阱结构的带隙蓝移。使用等离子化学气相沉积(PECVD)在InGaAs/AlGaAs量子阱的表面生长SiO2电介... 为了解决由于激光器腔面处的光吸收引起的腔面光学灾变损伤(COD),采用无杂质空位扩散(IFVD)法,研究了由SiO2电介质层诱导的InGaAs/AlGaAs量子阱结构的带隙蓝移。使用等离子化学气相沉积(PECVD)在InGaAs/AlGaAs量子阱的表面生长SiO2电介质层;然后采用IFVD在N2环境下进行高温退火实验,从而实现量子阱混杂(QWI)。实验结果表明:蓝移量的大小随退火时间和电介质层厚度的变化而变化,样品覆盖的电介质层越厚,在相同的退火温度下承受的退火时间越长,得到的蓝移量也越大。然而,在高温退火中的时间相对较长时,退火对量子阱造成的损坏相当大。高温短时循环退火,能够在保护量子阱晶体质量的同时实现QWI。通过在850℃退火6min下循环退火5次,得到了46nm的PL蓝移,且PL峰值保持在原样品的80%以上。 展开更多
关键词 半导体激光器 无杂质空位扩散(IFVD) INGAAS ALGAAS 量子混杂(qwi) 腔面光学灾变损伤(COD) 无吸收窗口(NAW)
原文传递
Cu/SiO_2逐层沉积增强无杂质空位诱导InGaAsP/InGaAsP量子阱混杂 被引量:3
2
作者 郭春扬 张瑞英 +1 位作者 刘纪湾 王林军 《半导体技术》 CAS 北大核心 2019年第3期189-193,共5页
研究了Cu/SiO_2逐层沉积增强的无杂质空位诱导InGaAsP/InGaAsP多量子阱混杂(QWI)行为。在多量子阱(MQW)外延片表面,采用等离子体增强的化学气相沉积(PECVD)不同厚度的SiO_2,然后溅射5 nm Cu,在不同温度下进行快速热退火(RTA)诱发量子阱... 研究了Cu/SiO_2逐层沉积增强的无杂质空位诱导InGaAsP/InGaAsP多量子阱混杂(QWI)行为。在多量子阱(MQW)外延片表面,采用等离子体增强的化学气相沉积(PECVD)不同厚度的SiO_2,然后溅射5 nm Cu,在不同温度下进行快速热退火(RTA)诱发量子阱混杂。通过光荧光(PL)谱表征样品在QWI前后的变化。实验结果表明,当RTA温度小于700℃时,PL谱峰值波长只有微移,且变化与其他参数关系不大;当RTA温度大于700℃时,PL谱峰值波长移动与介质层厚度和RTA时间都密切相关,当SiO_2厚度为200 nm,退火温度为750℃,时间为200 s时,可获得54.3 nm的最大波长蓝移。该种QWI方法能够诱导InGaAsP MQW带隙移动,QWI效果与InGaAsP MQW中原子互扩散激活能、互扩散原子密度以及在RTA过程中热应力有关。 展开更多
关键词 INGAASP 量子(MQW) 量子混杂(qwi) CU/SIO2 快速热退火 蓝移
下载PDF
采用IFVD-QWI技术制备电吸收调制DFB激光器 被引量:3
3
作者 张灿 朱洪亮 +4 位作者 梁松 韩良顺 黄永光 王宝军 王圩 《光电子.激光》 EI CAS CSCD 北大核心 2013年第8期1451-1455,共5页
采用等离子体增强化学气相沉积(PECVD)法在InGaAsP多量子阱/InP缓冲层/InGaAs层上沉积SiO2薄膜,通过N2气氛下快速热退火(RTA)方法实现无杂质空位扩散(IFVD)的量子阱混杂(QWI)。对不同退火温度下量子阱增益峰值波长的蓝移特性进行了实验... 采用等离子体增强化学气相沉积(PECVD)法在InGaAsP多量子阱/InP缓冲层/InGaAs层上沉积SiO2薄膜,通过N2气氛下快速热退火(RTA)方法实现无杂质空位扩散(IFVD)的量子阱混杂(QWI)。对不同退火温度下量子阱增益峰值波长的蓝移特性进行了实验摸索,在780℃@80s的退火条件下,可以获得最大72.8nm的相对波长蓝移量,并且发现快速热退火RTA温度低于780℃以下时,LD区的波长蓝移量随温度变化基本能控制在10nm以内。通过选取合适退火条件实现了光荧光(PL)峰值波长约50nm的蓝移量,在选区制备出合适带隙波长材料的基础上,在LD区制作全息光栅并二次外延P型掺杂电接触层后,采用标准化浅脊波导电吸收调制(EAM)分布反馈激光器(EML)工艺制备了1.5μm波长的EML管芯,器件阈值为20mA,出光功率达到2mW@90mA,静态消光比在+6V反偏压下为9.5dB。 展开更多
关键词 无杂质空位扩散(IFVD 量子混杂(qwi) 电吸收调制(EAM)分布反馈(DBF)激光器 (EML)
原文传递
Cu溅射诱导增强量子阱混杂实验研究 被引量:1
4
作者 崔晓 张灿 +2 位作者 梁松 Hou Lianping 朱洪亮 《光电子.激光》 EI CAS CSCD 北大核心 2014年第7期1332-1337,共6页
在InP基异质结InGaAsP多量子阱(MQW)结构上溅射Cu/SiO2复合层,开展了量子阱混杂(QWI)材料的实验研究。经快速退火(RTA),实现了比常规无杂质空位扩散(IFVD)方法更大的带隙波长蓝移量。在750℃、200s的退火条件下,获得最大172nm的波长蓝移... 在InP基异质结InGaAsP多量子阱(MQW)结构上溅射Cu/SiO2复合层,开展了量子阱混杂(QWI)材料的实验研究。经快速退火(RTA),实现了比常规无杂质空位扩散(IFVD)方法更大的带隙波长蓝移量。在750℃、200s的退火条件下,获得最大172nm的波长蓝移;通过改变退火条件,可实现不同程度的蓝移,满足光子集成技术中不同器件对带隙波长的需求。为了验证其用于光子集成领域的可行性,利用混杂技术分别制备了宽条激光器和单片集成电吸收调制激光器(EML)。在675℃退火温度,80s、120s和200s的退火时间下分别实现了61、81和98nm的波长蓝移;并且,相应的宽条激光器的电激射光(EL)谱偏调量与其材料的光致荧光(PL)谱偏调量基本一致。在675℃、120s退火条件下,制备的EML集成器件中,电吸收调制器(EAM)和分布反馈(DFB)激光器区的蓝移量分别83nm和23.7nm,相对带隙差为59.3nm。EML集成器件在激光器注入电流为100mA、调制器零偏压时出光功率达到9.6mW;EAM施加-5V反向偏压时静态消光比达16.4dB。 展开更多
关键词 量子混杂(qwi) 宽条激光器 电吸收调制激光器(EML)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部