期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于集成学习的交通流短时特性分析与神经网络预测方法 被引量:7
1
作者 郑乐军 文成林 《科学技术与工程》 北大核心 2021年第4期1615-1623,共9页
为揭示交通流的内在动态特性,利用分析法对交通流分形特性进行研究,表明该城市交通流序列具有长程相关性;为达到更精准的短期交通预测效果,同时提出一种基于思维进化算法(MEC)对神经网络最优初始参数的定向搜索,解决神经网络易陷入局部... 为揭示交通流的内在动态特性,利用分析法对交通流分形特性进行研究,表明该城市交通流序列具有长程相关性;为达到更精准的短期交通预测效果,同时提出一种基于思维进化算法(MEC)对神经网络最优初始参数的定向搜索,解决神经网络易陷入局部最优的问题;并用自适应增强算法(adaptive enhancement algorithm,Adaboost)对优化过的神经网络集成,弥补神经网络对新样本集的泛化性能差缺陷,在此基础上通过预测误差平方和倒数准则重新调整Adaboost算法对弱预测器权值分布,使每个预测器最大程度提高网络预测精度。验证结果表明,改进MEC-BP_Adaboost模型与BP模型相比,均方误差和平均绝对误差分别下降78.2%和46.4%,证明本文改进方法对交通流预测具有合理性,对不同的交通流状态具有较好的适应性。 展开更多
关键词 思维进化算 ADABOOST算 神经网络 极差(r/S)分析法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部