期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于集成学习的交通流短时特性分析与神经网络预测方法
被引量:
7
1
作者
郑乐军
文成林
《科学技术与工程》
北大核心
2021年第4期1615-1623,共9页
为揭示交通流的内在动态特性,利用分析法对交通流分形特性进行研究,表明该城市交通流序列具有长程相关性;为达到更精准的短期交通预测效果,同时提出一种基于思维进化算法(MEC)对神经网络最优初始参数的定向搜索,解决神经网络易陷入局部...
为揭示交通流的内在动态特性,利用分析法对交通流分形特性进行研究,表明该城市交通流序列具有长程相关性;为达到更精准的短期交通预测效果,同时提出一种基于思维进化算法(MEC)对神经网络最优初始参数的定向搜索,解决神经网络易陷入局部最优的问题;并用自适应增强算法(adaptive enhancement algorithm,Adaboost)对优化过的神经网络集成,弥补神经网络对新样本集的泛化性能差缺陷,在此基础上通过预测误差平方和倒数准则重新调整Adaboost算法对弱预测器权值分布,使每个预测器最大程度提高网络预测精度。验证结果表明,改进MEC-BP_Adaboost模型与BP模型相比,均方误差和平均绝对误差分别下降78.2%和46.4%,证明本文改进方法对交通流预测具有合理性,对不同的交通流状态具有较好的适应性。
展开更多
关键词
思维进化算
法
ADABOOST算
法
神经网络
重
标
极差
(
r
/S)
分析法
下载PDF
职称材料
题名
基于集成学习的交通流短时特性分析与神经网络预测方法
被引量:
7
1
作者
郑乐军
文成林
机构
杭州电子科技大学系统控制工程科学研究所
出处
《科学技术与工程》
北大核心
2021年第4期1615-1623,共9页
基金
国家自然科学基金(61751304)。
文摘
为揭示交通流的内在动态特性,利用分析法对交通流分形特性进行研究,表明该城市交通流序列具有长程相关性;为达到更精准的短期交通预测效果,同时提出一种基于思维进化算法(MEC)对神经网络最优初始参数的定向搜索,解决神经网络易陷入局部最优的问题;并用自适应增强算法(adaptive enhancement algorithm,Adaboost)对优化过的神经网络集成,弥补神经网络对新样本集的泛化性能差缺陷,在此基础上通过预测误差平方和倒数准则重新调整Adaboost算法对弱预测器权值分布,使每个预测器最大程度提高网络预测精度。验证结果表明,改进MEC-BP_Adaboost模型与BP模型相比,均方误差和平均绝对误差分别下降78.2%和46.4%,证明本文改进方法对交通流预测具有合理性,对不同的交通流状态具有较好的适应性。
关键词
思维进化算
法
ADABOOST算
法
神经网络
重
标
极差
(
r
/S)
分析法
Keywords
mind evolutiona
r
y algo
r
ithm
adaboost algo
r
ithm
neu
r
al netwo
r
ks
r
escaled
r
ange(
r
/S)analysis
分类号
U491.14 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于集成学习的交通流短时特性分析与神经网络预测方法
郑乐军
文成林
《科学技术与工程》
北大核心
2021
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部