A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron micr...A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron microscope slices by Fou-rier-Bessel synthesis and electron tomography (ET), and a series of computed tomography (CT) was developed to perform si-multaneous measurement on the structure and function of biomedical samples. The paper presents the 3D reconstruction seg-mentation display and analysis results of pollen spore, chaperonin, virus, head, cervical bone, tibia and carpus. At the same time, it also puts forward some potential applications of the new technique in the biomedical realm.展开更多
Attribute reduction is necessary in decision making system. Selecting right attribute reduction method is more important. This paper studies the reduction effects of principal components analysis (PCA) and system reco...Attribute reduction is necessary in decision making system. Selecting right attribute reduction method is more important. This paper studies the reduction effects of principal components analysis (PCA) and system reconstruction analysis (SRA) on coronary heart disease data. The data set contains 1723 records, and 71 attributes in each record. PCA and SRA are used to reduce attributes number (less than 71 ) in the data set. And then decision tree algorithms, C4.5, classification and regression tree ( CART), and chi-square automatic interaction detector ( CHAID), are adopted to analyze the raw data and attribute reduced data. The parameters of decision tree algorithms, including internal node number, maximum tree depth, leaves number, and correction rate are analyzed. The result indicates that, PCA and SRA data can complete attribute reduction work,and the decision-making rate on the reduced data is quicker than that on the raw data; the reduction effect of PCA is better than that of SRA, while the attribute assertion of SRA is better than that of PCA. PCA and SRA methods exhibit goodperformance in selecting and reducing attributes.展开更多
文摘A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron microscope slices by Fou-rier-Bessel synthesis and electron tomography (ET), and a series of computed tomography (CT) was developed to perform si-multaneous measurement on the structure and function of biomedical samples. The paper presents the 3D reconstruction seg-mentation display and analysis results of pollen spore, chaperonin, virus, head, cervical bone, tibia and carpus. At the same time, it also puts forward some potential applications of the new technique in the biomedical realm.
基金Supported by Ministry of Education of China ( No. 02038) , Asian Research Center of Nankai University ( No. AS0405) , and Tianjin Higher Education Science Development Fund( No. 20030621 ).
文摘Attribute reduction is necessary in decision making system. Selecting right attribute reduction method is more important. This paper studies the reduction effects of principal components analysis (PCA) and system reconstruction analysis (SRA) on coronary heart disease data. The data set contains 1723 records, and 71 attributes in each record. PCA and SRA are used to reduce attributes number (less than 71 ) in the data set. And then decision tree algorithms, C4.5, classification and regression tree ( CART), and chi-square automatic interaction detector ( CHAID), are adopted to analyze the raw data and attribute reduced data. The parameters of decision tree algorithms, including internal node number, maximum tree depth, leaves number, and correction rate are analyzed. The result indicates that, PCA and SRA data can complete attribute reduction work,and the decision-making rate on the reduced data is quicker than that on the raw data; the reduction effect of PCA is better than that of SRA, while the attribute assertion of SRA is better than that of PCA. PCA and SRA methods exhibit goodperformance in selecting and reducing attributes.