针对因采煤机电动机超长时间运行与矿井极端工作环境而引起的故障问题,结合异步电动机数学模型及其常见故障机理分析,在分析 BP 算法存在缺陷的基础上,提出一种用于电动机故障诊断的 PSO-BP 神经网络算法,以实现对采煤机运行状态的实时...针对因采煤机电动机超长时间运行与矿井极端工作环境而引起的故障问题,结合异步电动机数学模型及其常见故障机理分析,在分析 BP 算法存在缺陷的基础上,提出一种用于电动机故障诊断的 PSO-BP 神经网络算法,以实现对采煤机运行状态的实时监测。将 PSO 算法与 BP 算法相结合,共同优化神经网络连接权值,用电动机故障训练样本对 PSO-BP 神经网络进行训练并进行网络测试。结果表明,与 BP 神经网络相比,PSO-BP 神经网络能更快速、准确诊断电动机的健康状态,及时采用有效措施可降低电动机故障率,从而保障矿井人员作业安全,提高生产效率。展开更多
文摘针对因采煤机电动机超长时间运行与矿井极端工作环境而引起的故障问题,结合异步电动机数学模型及其常见故障机理分析,在分析 BP 算法存在缺陷的基础上,提出一种用于电动机故障诊断的 PSO-BP 神经网络算法,以实现对采煤机运行状态的实时监测。将 PSO 算法与 BP 算法相结合,共同优化神经网络连接权值,用电动机故障训练样本对 PSO-BP 神经网络进行训练并进行网络测试。结果表明,与 BP 神经网络相比,PSO-BP 神经网络能更快速、准确诊断电动机的健康状态,及时采用有效措施可降低电动机故障率,从而保障矿井人员作业安全,提高生产效率。