期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于部分连接神经网络的场景识别
1
作者
张月
潘伟
陈晓熹
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第4期482-486,共5页
目前基于图像的场景识别的方法都依赖于对图像特征的选取及特征数目的精简.提出了一种基于部分连接演化神经网络模型来进行图像场景识别的新方法:不对图像进行特征提取,而是将待识别图像的每个像素都作为神经网络的输入.为了克服新方法...
目前基于图像的场景识别的方法都依赖于对图像特征的选取及特征数目的精简.提出了一种基于部分连接演化神经网络模型来进行图像场景识别的新方法:不对图像进行特征提取,而是将待识别图像的每个像素都作为神经网络的输入.为了克服新方法由于大量神经元引起的模型训练时间过长问题,将基于C语言计算架构的演化神经网络模型创造性地移植到基于图形处理器(GPU)的通用并行计算构架(CUDA),神经网络的演化训练速度提高200倍以上.在实验中,尽管输入的图像大小达到300×400像素(120 000个输入神经元),但CUDA的部分连接演化神经网络对场景图像有较强的识别能力,对亮度、缩放、旋转等变化也有较好的鲁棒性.
展开更多
关键词
场景识别
部分
连接
演化
神经网络
CUDA
下载PDF
职称材料
题名
基于部分连接神经网络的场景识别
1
作者
张月
潘伟
陈晓熹
机构
厦门大学信息科学与技术学院
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第4期482-486,共5页
基金
国家自然科学基金(60975084)
福建省自然科学基金(2009J01305)
文摘
目前基于图像的场景识别的方法都依赖于对图像特征的选取及特征数目的精简.提出了一种基于部分连接演化神经网络模型来进行图像场景识别的新方法:不对图像进行特征提取,而是将待识别图像的每个像素都作为神经网络的输入.为了克服新方法由于大量神经元引起的模型训练时间过长问题,将基于C语言计算架构的演化神经网络模型创造性地移植到基于图形处理器(GPU)的通用并行计算构架(CUDA),神经网络的演化训练速度提高200倍以上.在实验中,尽管输入的图像大小达到300×400像素(120 000个输入神经元),但CUDA的部分连接演化神经网络对场景图像有较强的识别能力,对亮度、缩放、旋转等变化也有较好的鲁棒性.
关键词
场景识别
部分
连接
演化
神经网络
CUDA
Keywords
scene recognition
partially connected neural network
CUDA
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
TP183 [自动化与计算机技术—控制科学与工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于部分连接神经网络的场景识别
张月
潘伟
陈晓熹
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2010
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部