期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于轻量级卷积神经网络的带钢表面缺陷识别
被引量:
13
1
作者
李丹
王慢慢
+1 位作者
刘俊德
陈凤
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2022年第3期240-248,共9页
带钢表面缺陷识别对促进带钢生产质量提升至关重要。然而传统的图像处理与识别方法存在精度不高、且容易受到光线等因素影响;而新兴的基于深度学习的算法,则存在模型参数量大且难以部署等问题,无法在实际生产中得到广泛应用。本文提出...
带钢表面缺陷识别对促进带钢生产质量提升至关重要。然而传统的图像处理与识别方法存在精度不高、且容易受到光线等因素影响;而新兴的基于深度学习的算法,则存在模型参数量大且难以部署等问题,无法在实际生产中得到广泛应用。本文提出了一种轻量级部分深度混合可分离网络(PDMSNet)用于解决以上问题,由于其模型小以及浮点型运算(FLOPs)少更易于部署在资源受限的平台。采用标准的带钢表面缺陷数据集NEU-CLS的测试结果表明,与其他缺陷分类器相比,在带钢表面缺陷检测方面,本文所提出的模型性能更加优越。识别准确率达到了99.78%,而参数量只有0.17 M以及272 M FLOPs,在单一低端的GeForce MX250图形处理单元(GPU)识别一张图片平均时间为0.47 ms,可以满足工业现场实时检测的要求。
展开更多
关键词
带钢表面缺陷分类
轻量级网络
深度混合可分离
模块
部分
拼接
模块
下载PDF
职称材料
题名
基于轻量级卷积神经网络的带钢表面缺陷识别
被引量:
13
1
作者
李丹
王慢慢
刘俊德
陈凤
机构
安徽工业大学电气与信息工程学院
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2022年第3期240-248,共9页
基金
安徽省自然科学基金(2108085MF225)项目资助。
文摘
带钢表面缺陷识别对促进带钢生产质量提升至关重要。然而传统的图像处理与识别方法存在精度不高、且容易受到光线等因素影响;而新兴的基于深度学习的算法,则存在模型参数量大且难以部署等问题,无法在实际生产中得到广泛应用。本文提出了一种轻量级部分深度混合可分离网络(PDMSNet)用于解决以上问题,由于其模型小以及浮点型运算(FLOPs)少更易于部署在资源受限的平台。采用标准的带钢表面缺陷数据集NEU-CLS的测试结果表明,与其他缺陷分类器相比,在带钢表面缺陷检测方面,本文所提出的模型性能更加优越。识别准确率达到了99.78%,而参数量只有0.17 M以及272 M FLOPs,在单一低端的GeForce MX250图形处理单元(GPU)识别一张图片平均时间为0.47 ms,可以满足工业现场实时检测的要求。
关键词
带钢表面缺陷分类
轻量级网络
深度混合可分离
模块
部分
拼接
模块
Keywords
classification of steel surface defects
lightweight network
depth mixture separable module
partial splicing module
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
TH164 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于轻量级卷积神经网络的带钢表面缺陷识别
李丹
王慢慢
刘俊德
陈凤
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2022
13
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部