期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
基于LLE与Fisher线性判别的人脸识别算法 被引量:2
1
作者 马祥 王映卓 樊强 《现代电子技术》 2012年第8期64-66,共3页
为了提高基于流形学习理论人脸识别算法的识别率,采用一种将非线性降维与Fisher线性判别相结合的方法。首先利用邻域嵌入算法,将人脸图像测试和训练集的维数降低到合适维度,然后使用Fisher线性判别进行人脸数据集特征的提取,最后将测试... 为了提高基于流形学习理论人脸识别算法的识别率,采用一种将非线性降维与Fisher线性判别相结合的方法。首先利用邻域嵌入算法,将人脸图像测试和训练集的维数降低到合适维度,然后使用Fisher线性判别进行人脸数据集特征的提取,最后将测试集人脸图像特征和训练集人脸图像特征,使用最近邻分类器进行分类。在公开的Olivettifaces和ORL人脸图像数据库上,分别将该算法与几种经典基于流形学习理论的人脸识别算法进行了对比实验,实验结果表明当近邻数比较大时本算法识别率是最高的。 展开更多
关键词 邻域嵌入算法 FISHER线性判别 人脸识别 ORL人脸图像数据库
下载PDF
基于卷积神经网络的图像超分辨率方法研究 被引量:2
2
作者 杨志政 王春兴 《山东师范大学学报(自然科学版)》 CAS 2018年第4期427-433,共7页
结合认知构架ACT-R模型(Adaptive Control of Thought-Rational),基于邻域嵌入算法和深度学习的图像超分辨率重建方法,构建一个应用于超分辨率重建研究的ACT-R研究模型.在匹配阶段,根据低分辨率(Low Resolution,LR)测试图像的结构和内... 结合认知构架ACT-R模型(Adaptive Control of Thought-Rational),基于邻域嵌入算法和深度学习的图像超分辨率重建方法,构建一个应用于超分辨率重建研究的ACT-R研究模型.在匹配阶段,根据低分辨率(Low Resolution,LR)测试图像的结构和内容特征,运用图像的多尺度相似性和非局部相似性,对图像进行特征提取;在选择阶段,把邻域嵌入算法分为两层,进行邻域图像块的寻找,同时构建一个端到端的深层门限卷积神经网络,把从匹配阶段得到的高分辨率无细节小图像块输入到卷积神经网络中并得到输出图像,将输出图像与高分辨率无细节小图像块相加得到该低分辨率小图像块对应的高分辨率小图像块,最后把高分辨率图像块组合成高分辨率(High Resolution,HR)图像.决策阶段,我们进行实验并与其他方法对比.结果表明,该模型对单帧图像具有良好的重建能力,在视觉效果上和客观评价标准上都取得了不错的效果,能够较好的重建低分辨率图像. 展开更多
关键词 卷积神经网络 邻域嵌入算法 ACT-R认知模型 超分辨率重建
下载PDF
基于改进的邻域嵌入算法的图像超分辨率研究 被引量:1
3
作者 徐胜南 乔建萍 王春兴 《山东师范大学学报(自然科学版)》 CAS 2017年第4期61-67,共7页
本文提出了一种基于改进的邻域嵌入算法的图像超分辨率重建方法,基本思路是同时利用低分辨率图像自身和外部训练集的信息指导高分辨率图像的重建.邻域嵌入算法往往要求训练图像库包含广泛的细节信息,重建质量取决于测试图像和训练图像... 本文提出了一种基于改进的邻域嵌入算法的图像超分辨率重建方法,基本思路是同时利用低分辨率图像自身和外部训练集的信息指导高分辨率图像的重建.邻域嵌入算法往往要求训练图像库包含广泛的细节信息,重建质量取决于测试图像和训练图像的相似程度,当在图像库中找不到相似的训练图像块时,重建结果局部就会出现失真或模糊,而且在此过程中低分辨率测试图像本身所含的先验信息常被忽视.针对此类问题,本文引入图像的多尺度相似性,即不同尺度的图像所包含的局部结构相似,同时在寻找近邻图像块时采用双层寻找的方式,并将固定的邻域数目K改为设定固定阈值.实验结果表明,本算法不仅能够减小测试图像对训练图像集的依赖,而且能够克服重建过程中欠拟合和过拟合造成的失真,具有较快的运行速度. 展开更多
关键词 邻域嵌入算法 多尺度相似性 阈值 局部结构
下载PDF
结合高光谱像素级信息和CNN的玉米种子品种识别模型 被引量:11
4
作者 王立国 王丽凤 《遥感学报》 EI CSCD 北大核心 2021年第11期2234-2244,共11页
玉米作为中国重要粮食作物,品种众多,易出现错分现象,影响农业安全和粮食生产。针对传统基于卷积神经网络CNN(Convolutional Neural Network)的高光谱图像作物品种识别模型所需建模样本数量巨大的问题,提出基于高光谱像素级信息和CNN的... 玉米作为中国重要粮食作物,品种众多,易出现错分现象,影响农业安全和粮食生产。针对传统基于卷积神经网络CNN(Convolutional Neural Network)的高光谱图像作物品种识别模型所需建模样本数量巨大的问题,提出基于高光谱像素级信息和CNN的玉米种子品种识别模型。首先,获取不同品种玉米种子在400—1000 nm范围内的高光谱图像,提取样本全部像素的203维光谱信息,利用主成分分析PCA(Principal Component Analysis)算法将光谱维度降至8维。在实验中,样本的像素级光谱信息(即:样本的全部像素的光谱信息)除应用于CNN模型外,也应用于支持向量机(SVM)和K近邻分类(KNN)模型中,结果表明:在相同模型中,基于像素级光谱信息比基于米粒级光谱信息(即:每粒样本所有像素光谱信息的平均值)识别效果好;在相同情况下,CNN模型比SVM和KNN模型的识别效果好;基于像素级光谱信息和CNN的品种识别模型识别效果最稳定,依据像素级分类结果采用多数投票策略对玉米种子样本进行识别,样本识别精度高达100%(注:100%为建模集样本与测试集样本数量为0.27和0.32时的识别精度,随着测试集样本数量的增加,该识别精度将有所降低)。最后,使用t分布随机邻域嵌入(t-SNE)算法实现CNN输出特征值的可视化,验证了基于高光谱像素级信息和CNN的品种识别模型的有效性。在建模样本极少的情况下,实现了玉米种子品种的无损、高效识别,为精准农业提供了理论基础。 展开更多
关键词 高光谱图像 卷积神经网络 深度学习 玉米种子 t分布随机邻域嵌入算法 像素级光谱信息
原文传递
基于t-SNE和核马氏距离的滚动轴承健康状态评估 被引量:6
5
作者 胡启国 杜春超 罗棚 《组合机床与自动化加工技术》 北大核心 2021年第8期57-61,共5页
针对滚动轴承在健康状态评估过程中,退化状态特征筛选和健康指数难以构建等问题,提出了一种基于t-SNE(t-distribution Stochastic Neighbor Embedding)和核马氏距离的滚动轴承健康状态评估方法。首先,利用随机森林算法筛选出重要性较高... 针对滚动轴承在健康状态评估过程中,退化状态特征筛选和健康指数难以构建等问题,提出了一种基于t-SNE(t-distribution Stochastic Neighbor Embedding)和核马氏距离的滚动轴承健康状态评估方法。首先,利用随机森林算法筛选出重要性较高的退化状态特征,并构建高维相对退化状态特征;其次,为防止退化状态特征冗余对评估结果产生影响,利用t-SNE对高维相对退化状态特征集进行降维,将退化状态特征进行融合;最后,将其与等距映射(Isometric mapping,Isomap)、KPCA方法对比,以验证t-SNE流形学习算法进行退化状态特征降维的有效性与优越性,结果表明t-SNE算法具有一定优势。最终结果验证了所提方法的有效性。 展开更多
关键词 滚动轴承 退化状态特征 t-分布随机邻域嵌入算法 核马氏距离 健康状态评估
下载PDF
基于TSNE-BiGRU模型短期电力负荷预测 被引量:5
6
作者 蒲贞洪 朱元富 《电工技术》 2023年第3期52-57,共6页
短期电力负荷预测是电力系统合理调度与安全稳定运行的基础。为提高电力负荷预测精度,提出一种基于t分布邻域嵌入(t-SNE)算法和双向门控循环单元(Bi-GRU)网络的短期电力负荷预测方法。该方法首先通过多标签处理将电力负荷时序数据转换... 短期电力负荷预测是电力系统合理调度与安全稳定运行的基础。为提高电力负荷预测精度,提出一种基于t分布邻域嵌入(t-SNE)算法和双向门控循环单元(Bi-GRU)网络的短期电力负荷预测方法。该方法首先通过多标签处理将电力负荷时序数据转换成高维时间戳数据,进而在维持数据信息完整性的前提下通过t-SNE算法对其降维,并结合实时电价数据,基于Bi-GRU网络学习时间戳数据、实时电价数据及实时负荷数据之间的非线性特性,最后经全连接输出层聚合相关信息给出预测结果。基于新加坡地区电力基准数据集进行试验,对比分析所建模型TSNE-BiGRU与基准模型Bi-GRU及GRU的预测性能。试验结果表明所建模型TSNE-BiGRU具有良好的鲁棒性,能有效提高短期电力负荷的预测精度。其平均百分比误差值为0.49%,相较Bi-GRU与GRU,分别降低了23.44%与32.88%;其平均绝对误差值为30.58,相较两基准模型分别降低了22.19%与32.84%;其均方根误差值为39.40,相较两基准模型分别降低了17.16%与27.88%。 展开更多
关键词 短期电力负荷预测 t分布邻域嵌入算法 双向门控循环单元网络 预测误差
下载PDF
基于混合智能优化算法的输变电工程全环节关键数据处理方法 被引量:1
7
作者 何琳 黄博 +1 位作者 申亚波 李爽 《沈阳工业大学学报》 CAS 北大核心 2024年第3期263-269,共7页
为了提升输变电工程全环节的数据管理质效,提出了一种基于混合智能优化算法的输变电工程全环节关键数据处理方法。该方法以造价数据管理为核心,利用层次分析法建立工程造价控制评估模型,获得了造价评估指标与指标权重。同时设计了一种... 为了提升输变电工程全环节的数据管理质效,提出了一种基于混合智能优化算法的输变电工程全环节关键数据处理方法。该方法以造价数据管理为核心,利用层次分析法建立工程造价控制评估模型,获得了造价评估指标与指标权重。同时设计了一种改进的随机邻域嵌入算法实现数据降维,进而引入经自适应改进的鲸鱼优化算法及粒子群算法。在交叉策略框架下,将两者相结合并得到鲸鱼粒子群混合优化算法。实验结果表明,所提方法对输变电工程全环节关键数据的处理效果较优,而与其他方法相比,其精度和效率也均具备显著优势,能够提升数据管理水平。 展开更多
关键词 输变电工程 全环节 鲸鱼粒子群混合优化算法 随机邻域嵌入算法 工程造价 关键数据 交叉策略 数据管理 层次分析法
下载PDF
基于LNN-DPC加权集成学习的转炉炼钢终点碳温软测量方法 被引量:4
8
作者 熊倩 刘辉 刘旭琛 《计算机集成制造系统》 EI CSCD 北大核心 2022年第12期3886-3898,共13页
转炉炼钢终点控制的关键是碳温准确预报。针对实际生产中因原料品质差异导致的炉次样本波动性较大所造成全局单一模型无法精确预测终点碳温的问题,提出一种局部最近邻密度峰值聚类算法(LNN-DPC)加权集成学习软测量方法。首先,采用改进... 转炉炼钢终点控制的关键是碳温准确预报。针对实际生产中因原料品质差异导致的炉次样本波动性较大所造成全局单一模型无法精确预测终点碳温的问题,提出一种局部最近邻密度峰值聚类算法(LNN-DPC)加权集成学习软测量方法。首先,采用改进的峰值密度聚类算法划分降维后的训练数据形成局部样本子集,构建子集与原始数据间的一一对应关系生成高斯过程回归子模型,并在原始数据子集下度量得到熵值加权的子集“质心”;其次,通过灰色关联分析选择与测试样本关联度较强的模型作为局部模型,提出关联度加权集成策略输出碳温预测结果。在实际转炉炼钢生产过程数据仿真结果下,碳含量在±0.02%的误差范围内精度达到85.2%,温度在±10℃的误差范围内精度达到84.8%。 展开更多
关键词 转炉炼钢 集成学习 t-分布随机邻域嵌入算法 局部最近邻密度峰值聚类算法 灰色关联分析 高斯过程回归
下载PDF
基于t分布邻域嵌入算法的流式数据自动分群方法 被引量:4
9
作者 孟晓辰 王玥 祝连庆 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2018年第5期697-704,共8页
流式细胞仪中多参数流式数据分群传统方法主要是利用专业软件采取人工设门方式,圈出目标细胞进行分析,分析过程较为复杂,专业性较强。基于此,本文提出了一种基于t分布邻域嵌入(t-SNE)算法对多参数流式数据进行分群处理。该算法将样本数... 流式细胞仪中多参数流式数据分群传统方法主要是利用专业软件采取人工设门方式,圈出目标细胞进行分析,分析过程较为复杂,专业性较强。基于此,本文提出了一种基于t分布邻域嵌入(t-SNE)算法对多参数流式数据进行分群处理。该算法将样本数据在高维空间中的欧几里德距离转化为条件概率来表征相似性,使数据降到低维空间。本文通过使用流式细胞仪处理染色后的人体外周血细胞,并将处理后的数据导出作为实验样本数据,对其利用t-SNE算法进行降维,并与核主成分分析(KPCA)降维算法对比,分别使用K均值(Kmeans)算法对降维得到的主成分数据进行分类。结果表明,t-SNE算法对呈非对称且有拖尾分布的细胞类群具有很好的分群效果,分群准确率可达92.55%,或可有助于多色多参数流式数据进行自动分析。 展开更多
关键词 生物医学 细胞分群 t分布邻域嵌入算法 核主成分分析 K均值
原文传递
基于PCA与t-SNE特征降维的城市植被SVM识别方法 被引量:2
10
作者 于慧伶 霍镜宇 +1 位作者 张怡卓 蒋毅 《实验室研究与探索》 CAS 北大核心 2019年第12期135-140,共6页
以高光谱图像降维为研究问题,针对主成分分析法(PCA)投影结果混叠、线性不可分和t-分布式随机邻域嵌入算法(t-SNE)内存占用大、运行时间长等不足,提出了一种基于PCA与t-SNE结合的高光谱图像降维方法。设计了基于SVM的城市植被识别模型,... 以高光谱图像降维为研究问题,针对主成分分析法(PCA)投影结果混叠、线性不可分和t-分布式随机邻域嵌入算法(t-SNE)内存占用大、运行时间长等不足,提出了一种基于PCA与t-SNE结合的高光谱图像降维方法。设计了基于SVM的城市植被识别模型,有效地提高了运行速率,进而更好地提取高光谱图像的本质特征,提高了高光谱图像中城市植被的分类精度。实验选取肯尼迪航天中心(KSC)数据为对象,结果表明,PCA-t-SNE-SVM算法总体分类精度可达92.06%,Kappa系数为0.91时,分类效果最优,相较于PCA-SVM和t-SNE-SVM算法,总体分类精度分别提高了13.51%和3.33%,Kappa系数分别提高了0.15和0.04,均表现出良好的性能。 展开更多
关键词 高光谱图像分类 城市植被分类 主成分分析法 t-分布式随机邻域嵌入算法 支持向量机
下载PDF
近红外光谱结合无监督算法识别印度尼西亚烟煤 被引量:1
11
作者 刘曙 洪子云 +2 位作者 王娇 李晨 吴晓红 《中国口岸科学技术》 2021年第11期41-47,共7页
产地是进口煤炭风险来源的重要指示因子,开发快速、精准的煤炭产地识别方法具有重要意义。本文采集了来自俄罗斯、澳大利亚、印度尼西亚、蒙古国和加拿大共计222批进口烟煤代表性样品,通过采用近红外光谱分析,发现印度尼西亚烟煤近红外... 产地是进口煤炭风险来源的重要指示因子,开发快速、精准的煤炭产地识别方法具有重要意义。本文采集了来自俄罗斯、澳大利亚、印度尼西亚、蒙古国和加拿大共计222批进口烟煤代表性样品,通过采用近红外光谱分析,发现印度尼西亚烟煤近红外光谱在吸光度、光谱斜率和特征吸收峰3个方面存在特征性,采用主成分分析(PCA)和t-分布邻域嵌入算法(t-SNE),可实现对印度尼西亚烟煤的快速识别。 展开更多
关键词 印度尼西亚烟煤 近红外光谱 主成分分析 t-分布邻域嵌入算法
原文传递
基于CNN-SVM的调制方式识别优化算法 被引量:1
12
作者 念茂 郭里婷 陈平平 《福州大学学报(自然科学版)》 CAS 北大核心 2021年第3期323-328,共6页
信号调制方式识别在通信领域是一个研究热点,针对目前已调信号分类识别率受噪声的影响较大的问题,提出一种基于CNN-SVM的调制方式识别算法.该算法对不同已调信号做循环谱估计,生成相应的循环谱图,并截取等高截面图作为特征图,然后借助... 信号调制方式识别在通信领域是一个研究热点,针对目前已调信号分类识别率受噪声的影响较大的问题,提出一种基于CNN-SVM的调制方式识别算法.该算法对不同已调信号做循环谱估计,生成相应的循环谱图,并截取等高截面图作为特征图,然后借助卷积神经网络提取相应的特征,并采用t分布邻域嵌入算法对特征值降维处理,最后输入到支持向量机对已调信号进行分类识别.经实验仿真,当信噪比高于-2 dB时,算法识别率高于96%,证实了该算法具有很好的识别效果. 展开更多
关键词 自动调制识别 卷积神经网络 循环谱 t分布邻域嵌入算法 支持向量机
下载PDF
基于LSNPE算法的化工过程故障检测 被引量:24
13
作者 宋冰 马玉鑫 +1 位作者 方永锋 侍洪波 《化工学报》 EI CAS CSCD 北大核心 2014年第2期620-627,共8页
复杂化工过程通常具有多个操作模态,而且采集的数据不服从单一的高斯或非高斯分布。针对化工过程的多模态和复杂数据分布问题,将局部标准化(local standardized,LS)策略应用于邻域保持嵌入(neighborhood preserving embedding,NPE)算法... 复杂化工过程通常具有多个操作模态,而且采集的数据不服从单一的高斯或非高斯分布。针对化工过程的多模态和复杂数据分布问题,将局部标准化(local standardized,LS)策略应用于邻域保持嵌入(neighborhood preserving embedding,NPE)算法,提出了一种新的基于局部标准化邻域保持嵌入(local standardized neighborhood preserving embedding,LSNPE)算法的故障检测方法。首先,使用LSNPE算法提取高维数据的低维子流形,进行维数约减,同时保持邻域结构不变。其次,通过特征空间中样本的局部离群因子(local outlier factor,LOF)构造监控统计量并确定其控制限。相较于监控多模态化工过程的多模型策略,提出的LSNPE方法不需要过程先验知识的支持,只需建立一个全局的监控模型。最后,通过数值仿真及Tennessee Eastman(TE)过程仿真研究验证了本文提出方法的有效性。 展开更多
关键词 局部标准化 邻域保持嵌入算法 局部离群因子 多模态过程系统 监控模型
下载PDF
一种用于人脸识别的正交邻域保护嵌入算法 被引量:10
14
作者 陶晓燕 姬红兵 景志宏 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2008年第3期439-443,共5页
在邻域保护嵌入算法的基础上,提出了一种新的降维方法——正交邻域保护嵌入算法.首先,从最优投影的概念出发,定义了一种反映投影向量的邻域结构保护能力的函数;然后以邻域保护函数为目标函数,在原始的优化问题中增加正交约束条件... 在邻域保护嵌入算法的基础上,提出了一种新的降维方法——正交邻域保护嵌入算法.首先,从最优投影的概念出发,定义了一种反映投影向量的邻域结构保护能力的函数;然后以邻域保护函数为目标函数,在原始的优化问题中增加正交约束条件,推导得到一组具有正交性的最优投影向量的迭代公式.与邻域保护嵌入算法相比,得到的正交向量具有更好的邻域保护性能,从而带来更强的判别能力,降低了误差率.在标准人脸库上的实验结果表明,与其他降维方法相比,新算法的最低误差率可减小15%~20%,且在选取的特征维数较低时就可获得最优值. 展开更多
关键词 邻域保护嵌入算法 正交邻域保护嵌入算法 邻域保护能力 人脸识别
下载PDF
基于子分类器融合的部分遮挡人耳识别 被引量:9
15
作者 袁立 穆志纯 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第1期186-193,共8页
遮挡是人耳识别中一个难以回避的问题,本文对人耳受到部分遮挡的识别问题进行了研究。在分析人耳不同位置的鉴别能力的基础上,提出了一种基于决策层的子分类器融合的识别方法:首先将图像分割为若干连续但不重叠的子窗口;对每个子窗口,... 遮挡是人耳识别中一个难以回避的问题,本文对人耳受到部分遮挡的识别问题进行了研究。在分析人耳不同位置的鉴别能力的基础上,提出了一种基于决策层的子分类器融合的识别方法:首先将图像分割为若干连续但不重叠的子窗口;对每个子窗口,利用邻域保留嵌入算法进行特征提取,然后利用最近邻分类器进行识别;根据这些子分类器识别率的高低,可以得到相应的子窗口的鉴别能力;接下来再利用具有较高鉴别能力的子分类器进行融合识别来解决部分遮挡问题。在USTB人耳图像库上的实验结果表明人耳图像中确实有部分区域具有更高的鉴别能力,利用这些区域即可进行身份识别,而且本文提出的基于局部信息融合的方法比基于原始图像直接进行识别的方法具有更高的识别率,尤其适合于解决人耳识别中的部分遮挡问题。 展开更多
关键词 人耳识别 部分遮挡 邻域保留嵌入算法 子分类器融合
下载PDF
改进LNS和邻域保持嵌入算法的研究 被引量:3
16
作者 李元 黄莹莹 《计算机应用与软件》 北大核心 2021年第2期250-257,共8页
传统邻域保持嵌入算法(Neighbor Preserving Embedding,NPE)对具有多中心、方差差异明显特性的高维数据的降维处理效果并不好,因此提出一种改进LNS和邻域保持嵌入算法(Modified Local Neighbor Standardization-Neighbor Preserving Emb... 传统邻域保持嵌入算法(Neighbor Preserving Embedding,NPE)对具有多中心、方差差异明显特性的高维数据的降维处理效果并不好,因此提出一种改进LNS和邻域保持嵌入算法(Modified Local Neighbor Standardization-Neighbor Preserving Embedding,MLNS-NPE),并应用于故障诊断中。利用MLNS算法对数据进行处理,对处理后的数据进行NPE算法建模。在数值例子和青霉素发酵过程中应用该算法与传统NPE算法、核邻域保持嵌入算法(KNPE)、KNN算法比较,结果表明,采用该算法后,数据多中心和模态差异消除,为后续NPE算法的应用提供先决条件,同时相比其他算法故障检测率最高,提高了NPE算法对多模态数据的检测能力。 展开更多
关键词 改进LNS算法 邻域保持嵌入算法 青霉素发酵 多模态 故障检测
下载PDF
基于全局距离和类别信息的邻域保持嵌入算法 被引量:2
17
作者 梅清琳 张化祥 《山东大学学报(工学版)》 CAS 北大核心 2016年第1期10-14,21,共6页
提出一种基于全局距离和类别信息的邻域保持嵌入算法。该方法在使用欧氏距离构造邻域图中,加入表征全局距离的全局因子和表示类别信息的函数项,全局因子可以使分布不均匀的样本变得平滑均匀,类别信息可以使同类样本点紧凑异类样本点疏离... 提出一种基于全局距离和类别信息的邻域保持嵌入算法。该方法在使用欧氏距离构造邻域图中,加入表征全局距离的全局因子和表示类别信息的函数项,全局因子可以使分布不均匀的样本变得平滑均匀,类别信息可以使同类样本点紧凑异类样本点疏离,通过提高所选邻近点的质量,优化数据的局部邻域,使降维后的数据具有更好的可分性。试验结果表明,该算法具有较高的准确率,优于传统的邻域保持嵌入算法。 展开更多
关键词 降维 邻域保持嵌入算法 全局距离 类别信息 邻域优化
原文传递
基于NPE改进算法的人脸识别 被引量:2
18
作者 王族 闫德勤 +1 位作者 何阳 娄雪 《软件导刊》 2019年第2期9-12,共4页
邻域保持嵌入(NPE)算法与极端学习机结合后应用到人脸识别中没有达到令人满意的识别效果,为找到更优的解决方案,提出一种改进的邻域保持嵌入算法(SNPE)。在SNPE算法中将NPE目标式子与带有类间判别信息的式子做减法,通过极小化目标函数,... 邻域保持嵌入(NPE)算法与极端学习机结合后应用到人脸识别中没有达到令人满意的识别效果,为找到更优的解决方案,提出一种改进的邻域保持嵌入算法(SNPE)。在SNPE算法中将NPE目标式子与带有类间判别信息的式子做减法,通过极小化目标函数,达到最小化同一类别领域距离且最大化不同类别领域距离的目人脸数据库等实验结果表明,改进后的算法大幅提高了人脸识别率。 展开更多
关键词 邻域保持嵌入算法 流行学习 人脸识别
下载PDF
局部时差约束邻域保持嵌入算法在故障检测中的应用 被引量:1
19
作者 王琨 侍洪波 +2 位作者 谭帅 宋冰 陶阳 《化工学报》 EI CAS CSCD 北大核心 2022年第7期3109-3119,共11页
传统的邻域保持嵌入(neighborhood preserving embedding,NPE)算法通过k近邻(k-nearest neighbors,k-NN)方法选择邻域进行重构来实现降维。但在实际工业过程中采集的样本具有时序相关性,仅仅通过欧氏距离选择近邻样本不能充分反映数据... 传统的邻域保持嵌入(neighborhood preserving embedding,NPE)算法通过k近邻(k-nearest neighbors,k-NN)方法选择邻域进行重构来实现降维。但在实际工业过程中采集的样本具有时序相关性,仅仅通过欧氏距离选择近邻样本不能充分反映数据中包含的信息,从而影响检测效果。因此,提出一种局部时差约束邻域保持嵌入(local time difference constrained neighborhood preserving embedding,LTDCNPE)算法,充分考虑样本间的时间和空间关系,从而建立准确的故障检测模型。首先,该算法在固定尺度的时间窗内,根据样本的时序关系和空间特征挑选出邻域。其次,利用样本间的时间差异为邻域样本进行加权,使数据特征保留了高维空间的局部结构。然后,对降维后得到的主元空间和残差空间构建T和SPE统计量并确定控制限。最后,通过数值例子和Tennessee Eastman(TE)过程仿真验证LTDCNPE算法的有效性。 展开更多
关键词 过程控制 过程系统 动态建模 邻域保持嵌入算法 邻域选择 故障检测
下载PDF
基于GLRGMM的间歇过程在线监控策略
20
作者 赵小强 周文伟 《计算机应用研究》 CSCD 北大核心 2020年第1期127-130,152,共5页
针对间歇过程的非线性和动态性,提出了全局—局部正则化高斯混合模型(GLRGMM)算法。首先引入邻域保持嵌入算法提取局部流形结构,通过寻求一种低维投影对非线性过程进行全局结构保持,同时最大限度地保留局部流形特征;然后通过对高斯混合... 针对间歇过程的非线性和动态性,提出了全局—局部正则化高斯混合模型(GLRGMM)算法。首先引入邻域保持嵌入算法提取局部流形结构,通过寻求一种低维投影对非线性过程进行全局结构保持,同时最大限度地保留局部流形特征;然后通过对高斯混合模型引入正则项来在线监控更新高斯模型,获取非线性数据流形结构,解决数据动态性问题;最后集成全局—局部监控指标实现在线监控。通过青霉素发酵过程进行了验证,结果表明所提算法比DPCA、GLNPE具有更好的在线监控效果。 展开更多
关键词 间歇过程 在线监控 动态特性 邻域保持嵌入算法 高斯混合模型
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部