针对车辆高速紧急工况下的主动避撞问题,提出一种基于工况辨识的自适应避撞控制策略。以实时交通环境信息与车辆状态信息为基础构建一种紧急工况避撞模式分类方法,该方法把紧急工况避撞模式分为制动避撞、转向避撞、协调避撞三种模式。...针对车辆高速紧急工况下的主动避撞问题,提出一种基于工况辨识的自适应避撞控制策略。以实时交通环境信息与车辆状态信息为基础构建一种紧急工况避撞模式分类方法,该方法把紧急工况避撞模式分为制动避撞、转向避撞、协调避撞三种模式。对于制动避撞模式,设计一种考虑路面附着条件和驾乘人员舒适度的纵向制动避撞策略;对于转向操纵避撞模式,构建基于多项式路径规划的避撞策略;对于制动和转向协调避撞模式,设计一种基于数据驱动的自学习协调控制策略。不同控制策略的期望输出通过比例积分微分(Proportional integral differentiation,PID)下层控制器对期望值进行跟踪来完成避撞。在Matlab/Simulink环境中搭建Simulink-Carsim汽车紧急避撞控制联合仿真平台,基于该平台进行多种工况的虚拟试验来验证控制系统的实时性和有效性。结果表明,控制系统能自动有效识别当前紧急工况该采取何种避撞操纵,在完成避撞的同时也能保证车辆的稳定性。展开更多
文摘针对车辆高速紧急工况下的主动避撞问题,提出一种基于工况辨识的自适应避撞控制策略。以实时交通环境信息与车辆状态信息为基础构建一种紧急工况避撞模式分类方法,该方法把紧急工况避撞模式分为制动避撞、转向避撞、协调避撞三种模式。对于制动避撞模式,设计一种考虑路面附着条件和驾乘人员舒适度的纵向制动避撞策略;对于转向操纵避撞模式,构建基于多项式路径规划的避撞策略;对于制动和转向协调避撞模式,设计一种基于数据驱动的自学习协调控制策略。不同控制策略的期望输出通过比例积分微分(Proportional integral differentiation,PID)下层控制器对期望值进行跟踪来完成避撞。在Matlab/Simulink环境中搭建Simulink-Carsim汽车紧急避撞控制联合仿真平台,基于该平台进行多种工况的虚拟试验来验证控制系统的实时性和有效性。结果表明,控制系统能自动有效识别当前紧急工况该采取何种避撞操纵,在完成避撞的同时也能保证车辆的稳定性。