为了有效改善燃料电池混合动力系统的能耗,减少燃料电池性能衰减,保持辅助动力源的荷电状态(state of charge,SOC),提出一种基于遗忘因子递推最小二乘算法(forgetting factor recursive least square,FFRLS)的在线辨识方法和极小值原理...为了有效改善燃料电池混合动力系统的能耗,减少燃料电池性能衰减,保持辅助动力源的荷电状态(state of charge,SOC),提出一种基于遗忘因子递推最小二乘算法(forgetting factor recursive least square,FFRLS)的在线辨识方法和极小值原理的综合能量管理方法。该方法能根据在线辨识的结果和直流母线需求功率,完成对主动力源及辅助动力源的功率分配工作,并与基于离线辨识的算法结果以及等效氢耗最小能量管理方法(equivalent consumption minimization strategy,ECMS)进行对比分析。结果表明,该方法对等效氢耗的优化比离线以及ECMS的效果分别提升了6.33%和4.35%,对燃料电池性能衰减则分别优化了4.72%和6.98%,并能更好地维持辅助动力源的SOC。展开更多
文摘为了有效改善燃料电池混合动力系统的能耗,减少燃料电池性能衰减,保持辅助动力源的荷电状态(state of charge,SOC),提出一种基于遗忘因子递推最小二乘算法(forgetting factor recursive least square,FFRLS)的在线辨识方法和极小值原理的综合能量管理方法。该方法能根据在线辨识的结果和直流母线需求功率,完成对主动力源及辅助动力源的功率分配工作,并与基于离线辨识的算法结果以及等效氢耗最小能量管理方法(equivalent consumption minimization strategy,ECMS)进行对比分析。结果表明,该方法对等效氢耗的优化比离线以及ECMS的效果分别提升了6.33%和4.35%,对燃料电池性能衰减则分别优化了4.72%和6.98%,并能更好地维持辅助动力源的SOC。