期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
迁移学习下高分快视数据道路快速提取 被引量:4
1
作者 张军军 万广通 +2 位作者 张洪群 李山山 冯旭祥 《中国图象图形学报》 CSCD 北大核心 2020年第7期1501-1512,共12页
目的传统的道路提取方法自动化程度不高,无法满足快速获取道路信息的需求。使用深度学习的道路提取方法多关注精度的提升,网络冗余度较高。而迁移学习通过将知识从源领域迁移到目标领域,可以快速完成目标学习任务。因此,本文利用高分辨... 目的传统的道路提取方法自动化程度不高,无法满足快速获取道路信息的需求。使用深度学习的道路提取方法多关注精度的提升,网络冗余度较高。而迁移学习通过将知识从源领域迁移到目标领域,可以快速完成目标学习任务。因此,本文利用高分辨率卫星快视数据快速获取的特性,构建了一种基于迁移学习的道路快速提取深度神经网络。方法采用基于预训练网络的迁移学习方法,可以将本文整个道路提取过程分为两个阶段:首先在开源大型数据库Image Net上训练源网络,保存此阶段最优模型;第2阶段迁移预训练保存的模型至目标网络,利用预训练保存的权重参数指导目标网络继续训练,此时快视数据作为输入,只做目标任务的定向微调,从而加速网络训练。总体来说,前期预训练是一个抽取通用特征参数的过程,目标训练是针对道路提取任务特化的过程。结果本文构建的基于迁移学习的快速道路提取网络,迁移预训练模型与不迁移相比验证精度提升6.0%,单幅尺寸为256×256像素的数据测试时间减少49.4%。快视数据测试集平均精度可达88.3%。截取一轨中7304×6980像素位于天津滨海新区的快视数据,可在54 s内完成道路提取。与其他迁移模型对比,本文方法在快速预测道路的同时且能达到较高的准确率。结论实验结果表明,本文针对高分卫星快视数据,提出的利用预训练模型初始化网络能有效利用权重参数,使模型趋于轻量化,使得精度提升的同时也加快了提取速度,能够实现道路信息快速精准获取。 展开更多
关键词 高分辨率卫星 快视数据 道路快速提取 迁移学习 微调
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部