-
题名迁移学习下高分快视数据道路快速提取
被引量:4
- 1
-
-
作者
张军军
万广通
张洪群
李山山
冯旭祥
-
机构
中国科学院遥感与数字地球研究所
中国科学院大学
-
出处
《中国图象图形学报》
CSCD
北大核心
2020年第7期1501-1512,共12页
-
基金
中国科学院战略性先导科技专项(A类)地球大数据科学工程子课题项目:CASEarth小卫星产品服务研究(XDA19010401)
中国科学院遥感与数字地球研究所集成课题项目(Y6JD260057)。
-
文摘
目的传统的道路提取方法自动化程度不高,无法满足快速获取道路信息的需求。使用深度学习的道路提取方法多关注精度的提升,网络冗余度较高。而迁移学习通过将知识从源领域迁移到目标领域,可以快速完成目标学习任务。因此,本文利用高分辨率卫星快视数据快速获取的特性,构建了一种基于迁移学习的道路快速提取深度神经网络。方法采用基于预训练网络的迁移学习方法,可以将本文整个道路提取过程分为两个阶段:首先在开源大型数据库Image Net上训练源网络,保存此阶段最优模型;第2阶段迁移预训练保存的模型至目标网络,利用预训练保存的权重参数指导目标网络继续训练,此时快视数据作为输入,只做目标任务的定向微调,从而加速网络训练。总体来说,前期预训练是一个抽取通用特征参数的过程,目标训练是针对道路提取任务特化的过程。结果本文构建的基于迁移学习的快速道路提取网络,迁移预训练模型与不迁移相比验证精度提升6.0%,单幅尺寸为256×256像素的数据测试时间减少49.4%。快视数据测试集平均精度可达88.3%。截取一轨中7304×6980像素位于天津滨海新区的快视数据,可在54 s内完成道路提取。与其他迁移模型对比,本文方法在快速预测道路的同时且能达到较高的准确率。结论实验结果表明,本文针对高分卫星快视数据,提出的利用预训练模型初始化网络能有效利用权重参数,使模型趋于轻量化,使得精度提升的同时也加快了提取速度,能够实现道路信息快速精准获取。
-
关键词
高分辨率卫星
快视数据
道路快速提取
迁移学习
微调
-
Keywords
high-resolution satellite
quick view data
fast road extraction
transfer learning
fine-tuning
-
分类号
TP751.1
[自动化与计算机技术—检测技术与自动化装置]
-