期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于SE模块改进Xception的动物种类识别 被引量:7
1
作者 倪黎 邹卫军 《导航与控制》 2020年第2期106-111,共6页
Xception是Inception网络的一种极端化表现,在与Inception v3参数相近的情况下,它能够达到更高的准确度。由于神经网络提取的特征不一定都是有用特征,因此以Xception为基础,将SE(Squeeze and Excitation)模块加入该网络,调整特征通道的... Xception是Inception网络的一种极端化表现,在与Inception v3参数相近的情况下,它能够达到更高的准确度。由于神经网络提取的特征不一定都是有用特征,因此以Xception为基础,将SE(Squeeze and Excitation)模块加入该网络,调整特征通道的权重,使得网络的精确度得到提高。通过实验,融合SE模块的Xception网络训练精确度分别在Oxford-IIIT Pet数据集和CUB2002011数据集上提升了1%~1.7%和0.8%~1%,证明了SE模块能够进一步提升Xception的精确度。将改进后的Xception应用到动物种类识别中,根据精确度曲线对实验策略调整改进,最终在测试集上获得95.63%的识别率。 展开更多
关键词 深度学习 Xception 深度可分离卷积 SE模块 通道关系 动物种类识别
原文传递
基于集成多尺度注意力的图像篡改定位
2
作者 魏华建 严彩萍 李红 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第8期1237-1245,共9页
近年来,基于卷积神经网络图像拼接篡改检测算法取得了相当的进展.然而,由于篡改对象的大小和类型不同,现有的大多数模型仍然不能取得令人满意的效果.针对这些问题,提出一种集成多尺度注意力的网络进行图像篡改定位算法.首先在编码器中... 近年来,基于卷积神经网络图像拼接篡改检测算法取得了相当的进展.然而,由于篡改对象的大小和类型不同,现有的大多数模型仍然不能取得令人满意的效果.针对这些问题,提出一种集成多尺度注意力的网络进行图像篡改定位算法.首先在编码器中添加多尺度的双注意力模块——位置注意力和通道注意力,其中,位置注意力模块通过捕捉任意2个特征图的位置关系获取特征图在空间维度上的语义信息依赖关系,使每个像素点均能感知其余位置像素点的信息;通道注意力模块采用与位置注意力相似的自注意力操作捕捉任意2个通道映射之间的关系,使像素点感知到其余通道像素点的信息.考虑到篡改目标大小不同,多尺度注意力模块将特征图划分为多个子区域,在捕获长程语义信息依赖关系的同时也能适应各种形状大小的篡改区域,可以更好地处理不同尺度的拼接篡改图,降低高分辨率特征图的计算开销.在公开数据集CASIA上进行实验的结果表明,所提算法得到的F1和IoU值分别达到62.3%和61.2%,比其他现有算法有明显提升. 展开更多
关键词 图像拼接定位 多尺度 空间通道关系 自注意力
下载PDF
基于空间通道挤压激励模块的肝硬化识别
3
作者 王倩 赵希梅 《计算机工程》 CAS CSCD 北大核心 2021年第8期308-314,共7页
针对卷积神经网络对特征信息学习不全面、识别准确率和分类精度不高的问题,提出一种采用空间通道挤压激励模块的scSE_MVGG网络,将其应用于肝硬化识别。对肝硬化图像进行数据增强,以避免深度学习训练出现过拟合现象,改进VGG网络使其适应... 针对卷积神经网络对特征信息学习不全面、识别准确率和分类精度不高的问题,提出一种采用空间通道挤压激励模块的scSE_MVGG网络,将其应用于肝硬化识别。对肝硬化图像进行数据增强,以避免深度学习训练出现过拟合现象,改进VGG网络使其适应不同实验样本尺寸,同时将scSE模块与改进的MVGG网络相融合,通过提高网络提取特征的指向性增强肝硬化识别效果。实验结果表明,该网络对肝硬化图像的识别率达到98.78%,较scSE_VGG、scSE_AlexNet等网络识别效果更优。 展开更多
关键词 肝硬化识别 空间通道挤压激励模块 卷积神经网络 VGG网络 空间通道关系
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部