本文在Q_Υ={(x,t),-1<x<1,0<t≤Υ}上,研究如下形式的第三边值问题αu/αt=α/αx(a(u、x、t)αu/αx)+α/αx b(u、x、t) (a(u、x、t)αu/αx+ψ(x,t)u)|x=-1=g1(t) (a(u、x、t)αu/αx+ψ(x,t)u)|x=1=g2(t) u(x,o)=u_o(x) ...本文在Q_Υ={(x,t),-1<x<1,0<t≤Υ}上,研究如下形式的第三边值问题αu/αt=α/αx(a(u、x、t)αu/αx)+α/αx b(u、x、t) (a(u、x、t)αu/αx+ψ(x,t)u)|x=-1=g1(t) (a(u、x、t)αu/αx+ψ(x,t)u)|x=1=g2(t) u(x,o)=u_o(x) a(u、x、t)≥0在A(u、x、t)=integral from o to v a(τ,x,t)dτ在(x,t)∈Q_T上关于u为严格增函数的条件下,得到问题(1.1)—(1.3)存在广义解的结论。展开更多
文摘本文在Q_Υ={(x,t),-1<x<1,0<t≤Υ}上,研究如下形式的第三边值问题αu/αt=α/αx(a(u、x、t)αu/αx)+α/αx b(u、x、t) (a(u、x、t)αu/αx+ψ(x,t)u)|x=-1=g1(t) (a(u、x、t)αu/αx+ψ(x,t)u)|x=1=g2(t) u(x,o)=u_o(x) a(u、x、t)≥0在A(u、x、t)=integral from o to v a(τ,x,t)dτ在(x,t)∈Q_T上关于u为严格增函数的条件下,得到问题(1.1)—(1.3)存在广义解的结论。