针对循环冗余校验(CRC)准则在信道条件恶化时可能使译码出现较大迭代次数及错误的问题,提出了基于可靠度的迭代停止算法及重传算法。首先,每次迭代后,计算本次译码中间结果的可靠度,通过判断其是否达到阈值来实现迭代的提前结束;然后,...针对循环冗余校验(CRC)准则在信道条件恶化时可能使译码出现较大迭代次数及错误的问题,提出了基于可靠度的迭代停止算法及重传算法。首先,每次迭代后,计算本次译码中间结果的可靠度,通过判断其是否达到阈值来实现迭代的提前结束;然后,将具有最大可靠度的中间结果保存并作为最终译码结果;最后,每次译码后,通过判断最大可靠度是否低于重传阈值来决定是否重传,通过至多3次传输的译码结果来计算最佳译码结果。仿真结果表明,在信噪比低于1.2 d B时,与CRC准则相比,迭代停止算法能在不增加迭代次数的基础上减少1或2个比特错误,重传算法能进一步减少至少2个比特错误,基于可靠度的算法可以实现更少的误比特数和迭代次数。展开更多
Noise intensity distributed in seismic data varies with different frequencies or frequency bands; thus, noise attenuation on the full-frequency band affects the dynamic properties of the seismic reflection signal and ...Noise intensity distributed in seismic data varies with different frequencies or frequency bands; thus, noise attenuation on the full-frequency band affects the dynamic properties of the seismic reflection signal and the subsequent seismic data interpretation, reservoir description, hydrocarbon detection, etc. Hence, we propose an adaptive noise attenuation method for edge and amplitude preservation, wherein the wavelet packet transform is used to decompose the full-band seismic signal into multiband data and then process these data using nonlinear anisotropic dip-oriented edge-preserving fi ltering. In the fi ltering, the calculated diffusion tensor from the structure tensor can be exploited to establish the direction of smoothing. In addition, the fault confidence measure and discontinuity operator can be used to preserve the structural and stratigraphic discontinuities and edges, and the decorrelation criteria can be used to establish the number of iterations. These parameters can minimize the intervention and subjectivity of the interpreter, and simplify the application of the proposed method. We applied the proposed method to synthetic and real 3D marine seismic data. We found that the proposed method could be used to attenuate noise in seismic data while preserving the effective discontinuity information and amplitude characteristics in seismic refl ection waves, providing high-quality data for interpretation and analysis such as high-resolution processing, attribute analysis, and inversion.展开更多
文摘针对循环冗余校验(CRC)准则在信道条件恶化时可能使译码出现较大迭代次数及错误的问题,提出了基于可靠度的迭代停止算法及重传算法。首先,每次迭代后,计算本次译码中间结果的可靠度,通过判断其是否达到阈值来实现迭代的提前结束;然后,将具有最大可靠度的中间结果保存并作为最终译码结果;最后,每次译码后,通过判断最大可靠度是否低于重传阈值来决定是否重传,通过至多3次传输的译码结果来计算最佳译码结果。仿真结果表明,在信噪比低于1.2 d B时,与CRC准则相比,迭代停止算法能在不增加迭代次数的基础上减少1或2个比特错误,重传算法能进一步减少至少2个比特错误,基于可靠度的算法可以实现更少的误比特数和迭代次数。
基金sponsored by the National Natural Science Foundation of China(No.41174114)the National Science and Technology Grand Project(No.2011ZX05023-005-010)
文摘Noise intensity distributed in seismic data varies with different frequencies or frequency bands; thus, noise attenuation on the full-frequency band affects the dynamic properties of the seismic reflection signal and the subsequent seismic data interpretation, reservoir description, hydrocarbon detection, etc. Hence, we propose an adaptive noise attenuation method for edge and amplitude preservation, wherein the wavelet packet transform is used to decompose the full-band seismic signal into multiband data and then process these data using nonlinear anisotropic dip-oriented edge-preserving fi ltering. In the fi ltering, the calculated diffusion tensor from the structure tensor can be exploited to establish the direction of smoothing. In addition, the fault confidence measure and discontinuity operator can be used to preserve the structural and stratigraphic discontinuities and edges, and the decorrelation criteria can be used to establish the number of iterations. These parameters can minimize the intervention and subjectivity of the interpreter, and simplify the application of the proposed method. We applied the proposed method to synthetic and real 3D marine seismic data. We found that the proposed method could be used to attenuate noise in seismic data while preserving the effective discontinuity information and amplitude characteristics in seismic refl ection waves, providing high-quality data for interpretation and analysis such as high-resolution processing, attribute analysis, and inversion.