期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
节点应力连续的四边形单元 被引量:6
1
作者 唐旭海 郑超 +1 位作者 吴圣川 张建海 《应用数学和力学》 CSCD 北大核心 2009年第12期1427-1439,共13页
节点应力连续的四边形单元Q4-CNS是一种基于单位分解理论的混合的有限元无网格法.Q4-CNS可以视作FE-LSPIM QUAD4的发展.Q4-CNS形函数的导数在节点处是连续的,因此可以自然的得到节点应力,而不需要使用节点应力磨平算法.数值实验表明,与... 节点应力连续的四边形单元Q4-CNS是一种基于单位分解理论的混合的有限元无网格法.Q4-CNS可以视作FE-LSPIM QUAD4的发展.Q4-CNS形函数的导数在节点处是连续的,因此可以自然的得到节点应力,而不需要使用节点应力磨平算法.数值实验表明,与传统四边形单元(QUAD4)相比,Q4-CNS具有更好的计算精度和更高的收敛速度.在扭曲网格下,Q4-CNS也能取得满意的数值精度.然而,QUAD4的数值精度则会随着网格的扭曲明显的变差.基于Kirchhoff-Love假设的非协调板单元计算中,不仅要求形函数在单元的交界面上要保持C0连续性,而且要求形函数在节点处具有C1连续性,所以在任意的四边形单元上构造满足插值条件的非协调板单元形函数较为困难.Q4-CNS形函数的导数在节点处是连续的,所以Q4-CNS在求解基于Kirchhoff-Love假设的板单元问题中具有潜在的应用价值. 展开更多
关键词 Q4—CNS 单位分解法 连续节点应力 数值精度 网格扭曲
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部